Pier Paolo Giardino

HEFT2020

15/04/2020

S. Dawson, PPG, Phys.Rev.D 101 (2020) 1,013001

EWPO in the SM depend on a small set of parameters

$$M_W, \Gamma_W, \Gamma_Z, \sigma_h, R_l, R_b, R_c, A_{l,FB}, A_{b,FB}, A_{c,FB}, A_l, A_b, A_c$$

W mass as an example:

$$M_W^2 = \frac{M_z^2}{2} \left(1 + \sqrt{1 - \frac{\sqrt{8\pi\alpha(1 + \Delta r)}}{G_\mu M_z^2}} \right) \frac{\text{Quantum corrections}}{\Delta r \to \Delta r(M_Z, G_\mu, \alpha, M_h, m_t, \alpha_s)}$$

A small set of inputs can describe a large number of observables.

Precision physics can give information on new physics

How can we systematically look for new physics?

Assume the SM is low energy limit of an EFT

The theory is renormalizable order by order in powers of Λ

We consider only Dimension-6 operators

We use EWPO to study the effects of NLO corrections on SMEFT

Induced effective couplings

$$\begin{split} L &\equiv 2M_Z \sqrt{\sqrt{2}G_\mu} Z_\mu \left[g_L^{Zq} + \delta g_L^{Zq} \right] \overline{q} \gamma_\mu q + 2M_Z \sqrt{\sqrt{2}G_\mu} Z_\mu \left[g_R^{Zu} + \delta g_R^{Zu} \right] \overline{u}_R \gamma_\mu u_R \\ &+ 2M_Z \sqrt{\sqrt{2}G_\mu} Z_\mu \left[g_R^{Zd} + \delta g_R^{Zd} \right] \overline{d}_R \gamma_\mu d_R + 2M_Z \sqrt{\sqrt{2}G_\mu} Z_\mu \left[g_L^{Zl} + \delta g_L^{Zl} \right] \overline{l} \gamma_\mu l \\ &+ 2M_Z \sqrt{\sqrt{2}G_\mu} Z_\mu \left[g_R^{Ze} + \delta g_R^{Ze} \right] \overline{e}_R \gamma_\mu e_R + 2M_Z \sqrt{\sqrt{2}G_\mu} \left(\delta g_R^{Z\nu} \right) \overline{\nu}_R \gamma_\mu \nu_R \\ &+ \frac{\overline{g}_2}{\sqrt{2}} \left\{ W_\mu \left[(1 + \delta g_L^{Wq}) \overline{u}_L \gamma_\mu d_L + \left(\delta g_R^{Wq} \right) \overline{u}_R \gamma_\mu d_R \right] \\ &+ W_\mu \left[(1 + \delta g_L^{Wl}) \overline{\nu}_L \gamma_\mu e_L + \left(\delta g_R^{W\nu} \right) \overline{\nu}_R \gamma_\mu e_R \right] + h.c. \right\}. \end{split}$$

Do not interfere with SM

$$\begin{split} \delta g_L^{Wq} &= \delta g_L^{Zu} - \delta g_L^{Zd} \\ \delta g_L^{Wl} &= \delta g_L^{Z\nu} - \delta g_L^{Ze} \,. \end{split}$$

Not independent at LO due to SU(2)

7 new parameters (3+2*2)

Only 8 combinations can be probed at a time

 $M_W, g_I^{ZU}, g_I^{Zd}, g_I^{Ze}, g_I^{Z\nu}, g_R^{ZU}, g_R^{Zd}, g_R^{Ze}$

At LO effective couplings depend on (Warsaw basis)

\mathcal{O}_{ll}	$(\bar{l}\gamma_{\mu}l)(\bar{l}\gamma^{\mu}l)$	$\mathcal{O}_{\phi WB}$	$(\phi^{\dagger}\tau^{a}\phi)W^{a}_{\mu\nu}B^{\mu\nu}$	$\mathcal{O}_{\phi D}$	$\left(\phi^{\dagger}D^{\mu}\phi ight)^{*}\left(\phi^{\dagger}D_{\mu}\phi ight)$
$\mathcal{O}_{\phi e}$	$(\phi^{\dagger}i\overleftrightarrow{D}_{\mu}\phi)(\overline{e}_{R}\gamma^{\mu}e_{R})$	$\mathcal{O}_{\phi u}$	$(\phi^{\dagger}i\overleftrightarrow{D}_{\mu}\phi)(\overline{u}_{R}\gamma^{\mu}u_{R})$	$\mathcal{O}_{\phi d}$	$(\phi^{\dagger}i\overleftrightarrow{D}_{\mu}\phi)(\overline{d}_{R}\gamma^{\mu}d_{R})$
$\mathcal{O}_{\phi q}^{(3)}$	$(\phi^{\dagger}i \overleftrightarrow{D}^{a}_{\mu} \phi)(\bar{q}\tau^{a}\gamma^{\mu}q)$	$\mathcal{O}_{\phi q}^{(1)}$	$(\phi^{\dagger}i\overleftrightarrow{D}_{\mu}\phi)(\bar{q}\tau^{a}\gamma^{\mu}q)$	$\mathcal{O}_{\phi l}^{(3)}$	$(\phi^{\dagger}i \overleftrightarrow{D}^{a}_{\mu} \phi)(\bar{l}\tau^{a}\gamma^{\mu}l)$
$\mathcal{O}_{\phi l}^{(1)}$	$(\phi^{\dagger}i\overleftrightarrow{D}_{\mu}\phi)(\bar{l}\tau^{a}\gamma^{\mu}l)$				

At NLO 10 combinations but 32 operators

SMEFT @ NLO

SM is renormalized in OS Operators are treated as MS

$$\mathscr{C}_{i}(\mu) = \mathscr{C}_{0,i} - \frac{1}{2\epsilon} \frac{1}{16\pi^{2}} \sqrt[\gamma_{i,j}\mathscr{C}_{j}]$$

RGE mixing: new operators enter here

E. Jenkins, A. Manohar, M. Trott JHEP 1310 (2013) 087, JHEP 1401 (2014) 035; R. Alonso, E. Jenkins, A. Manohar, M. Trott JHEP 1404 (2014) 159

SM and SMEFT at NLO
$$\Delta_r = \Delta_{r,SM} + \frac{v^2}{\Lambda^2} \Delta_{r,EFT}$$

S. Dawson, PPG, PRD 97 (2018) no.9, 093003

SM Q

SMEFT @ NLO

$$M_W^2 = \frac{M_z^2}{2} \left(1 + \sqrt{1 - \frac{\sqrt{8\pi\alpha(1 + \Delta r)}}{G_\mu M_z^2}} \right) + \delta M_W^{SMEFT}$$

uantum corrections (known) $\Delta r \to \Delta r(M_Z, G_\mu, \alpha, M_h, m_t, \alpha_s)$

Dubovyk, A. Freitas, J. Gluza, T. Riemann, and J. Usovitsch: arXiv:1906.08815; A. Fritas: arXiv: 1401.2447; M. Awramik, M. Czakon, A. Freitas, and G. Weiglein; arXiv: arXiv:hep-ph/0311148

EFT corrections

Many new operators at NLO

$$\begin{split} \delta M_W^{LO} &= \frac{v^2}{\Lambda^2} \bigg\{ -29.827 \mathcal{C}_{\phi l}^{(3)} + 14.914 \mathcal{C}_{ll} - 27.691 \mathcal{C}_{\phi D} - 57.479 \mathcal{C}_{\phi WB} \bigg\} \\ \delta M_W^{NLO} &= \frac{v^2}{\Lambda^2} \bigg\{ -35.666 \mathcal{C}_{\phi l}^{(3)} + 17.243 \mathcal{C}_{ll} - 30.272 \mathcal{C}_{\phi D} - 64.019 \mathcal{C}_{\phi WB} \\ &- 0.137 \mathcal{C}_{\phi d} - 0.137 \mathcal{C}_{\phi e} - 0.166 \mathcal{C}_{\phi l}^{(1)} - 2.032 \mathcal{C}_{\phi q}^{(1)} + 1.409 \mathcal{C}_{\phi q}^{(3)} + 2.684 \mathcal{C}_{\phi u} \\ &+ 0.438 \mathcal{C}_{lq}^{(3)} - 0.027 \mathcal{C}_{\phi B} - 0.033 \mathcal{C}_{\phi \Box} - 0.035 \mathcal{C}_{\phi W} - 0.902 \mathcal{C}_{uB} - 0.239 \mathcal{C}_{uW} - 0.15 \mathcal{C}_W \bigg\} \end{split}$$

with $\Lambda = I \text{ TeV}$

Single parameter fits at 95% CL

5-10% effects from NLO

Fits to other coefficients that do not appear at LO not particularly informative

Coefficient	LO	NLO	
\mathcal{C}_{ll}	[-0.0039, 0.021]	[-0.0044, 0.019]	
$\mathcal{C}_{\phi WB}$	[-0.0088, 0.0013]	[-0.0079, 0.0016]	
$\mathcal{C}_{\phi u}$	$\left[-0.072, 0.091 ight]$	$\left[-0.035, 0.084 ight]$	
${\cal C}^{(3)}_{\phi q}$	$\left[-0.011, 0.014 ight]$	$\left[-0.010, 0.014 ight]$	
$\mathcal{C}^{(1)}_{\phi q}$	$\left[-0.027, 0.043 ight]$	$\left[-0.031, 0.036 ight]$	
$\mathcal{C}^{(3)}_{\phi l}$	$\left[-0.012, 0.0029 ight]$	$\left[-0.010, 0.0028 ight]$	
$\mathcal{C}^{(1)}_{\phi l}$	$\left[-0.0043, 0.012 ight]$	$\left[-0.0047, 0.012 ight]$	
$\mathcal{C}_{\phi e}$	$\left[-0.013, 0.0094 ight]$	$\left[-0.013, 0.0080 ight]$	
$\mathcal{C}_{\phi D}$	$\left[-0.025, 0.0019 ight]$	$\left[-0.023, 0.0023 ight]$	
$\mathcal{C}_{\phi d}$	[-0.16, 0.060]	[-0.13, 0.063]	

Fit at LEP

Marginalized fits at 95% CL

Coefficient	LO	NLO
$\mathcal{C}_{\phi D}$	[-0.034, 0.041]	[-0.039, 0.051]
$\mathcal{C}_{\phi WB}$	$\left[-0.080, 0.0021 ight]$	$\left[-0.098, 0.012 ight]$
$\mathcal{C}_{\phi d}$	[-0.81, -0.093]	[-1.07, -0.03]
${\cal C}^{(3)}_{\phi l}$	[-0.025, 0.12]	[-0.039, 0.16]
$\mathcal{C}_{\phi u}$	[-0.12, 0.37]	[-0.21, 0.41]
${\cal C}_{\phi l}^{(1)}$	[-0.0086, 0.036]	$\left[-0.0072, 0.037 ight]$
\mathcal{C}_{ll}	$\left[-0.085, 0.035 ight]$	$\left[-0.087, 0.033 ight]$
${\cal C}^{(1)}_{\phi q}$	[-0.060, 0.076]	$\left[-0.095, 0.075 ight]$

All NLO coefficients put to 0 $\mathscr{C}_{\phi e} = 0, \, \mathscr{C}^{(3)}_{\phi q} = 0$

with $\Lambda = I \text{ TeV}$

Fits done marginalizing over 7 parameters

Large 20-30% effects.

Single fit vs. Marginalized fit at LEP

Small effects for single fit vs. large effects for marginalized fit

Large NLO corrections seem to propagate

Conclusions

- I have presented a calculation of the complete NLO EW and QCD corrections to the EWPO in the SMEFT.
- and used it to test their effects on the EFT fits.
- NLO effects are possibly large and should be taken into account.
- I considered only EWPO, similar studies for Higgs and Top data are necessary.
- A more general fit, that uses Higgs and Top results and measurements at other regimes could include omitted (NLO) operators.