

COVID-HEFT 2020, University of Granada Quarantine, Granada Spain, April 16, 2020

R. M. Godbole, D. Miller, M. Muhlleitner: 0708.0458 Q. Cao, C. Jackson, W.Y. Keung, I. Low: 0911.3398 Y. Gao, A. V. Gritsan, Z. Guo, K. Melnikov, M. Schulze, et. al: 1001.3396 A. De Rujula, J. Lykken, M. Pierini, C. Rogan, M. Spiropulu: 1001.5300 S. Bolognesi, Y. Gao, A. V. Gritsan, K. Melnikov, et. al: 1208.4018 R. Boughezal, T. LeCompte, F. Petriello: 1208.4311 Avery, Bourilkov, Chen, Cheng, Drozdetskiy, et. al: 1210.0896 J.M. Cambell, W.T. Giele, C. Williams: 1204.4424 J. Gainer, J. Lykken, et. al.: 1304.4936 P. Artoisenet, P. de Aquino, F. Demartin, F. Maltoni, et. al: 1306.6464 Sun, Yi and Wang, Xian-Fu and Gao, Dao-Neng: 1309.4171 Anderson, S. Bolognesi, F. Caola, Y. Gao, A. V. Gritsan, et al.: 1309.4819 T. Chen, J. Gainer, et. al.: 1310.1397 Gonzales-Alonso, Isidori: 1403.2648 J. Gainer, J. Lykken, K. T. Matchev, S. Mrenna, M. Park: 1403.4951 M. Beneke, D. Boito, Y. Wang: 1406.1361 M. Gonzalez-Alonso, A. Greljo, G. Isidori, and D. Marzocca: 1504.04018 M. Bordone, A. Greljo, G. Isidori, D. Marzocca, A. Pattori: 1507.02555 J. S. Gainer, M. Gonzalez-Alonso, et. al. 1808.00965 A. V. Gritsan, J. Roskes, et. al. 2002.09888 + many others as well as various ATLAS and CMS studies

Physics Possibilities in $h \rightarrow 4\ell$ and $h \rightarrow 2\ell\gamma$

Probing Higgs CP properties

(Y. Chen, R. Harnik, RVM: 1404.1336, 1503.05855)

New Observables for CP violation in Higgs decays

(Y. Chen, A. Falkowski, I. Low, RVM: 1405.6723)

Extracting effective Higgs hVV couplings

(Y. Chen, N. Tran, RVM: 1211.1959, 1310.2893)

Hypothesis testing & multi-parameter extraction at LHC

(Y. Chen, RVM + others: 1108.2274, 1208.4840, 1401.2077, 1410.4817, 1411.3441)

Exotic Higgs decays

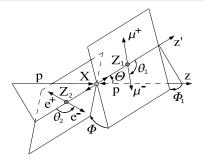
(A. Falkowski, RVM: arXiv:1404.1095)

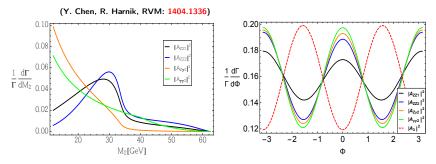
Probing top Yukawa CP properties

(Y. Chen, D. Stolarski, RVM: 1505:01168)

Testing Custodial symmetry

(Y. Chen, J. Lykken, M. Spiropulu D. Stolarski, RVM: 1608:02159)


Probing non-linear Higgs dynamics


(D. Liu, I. Low, RVM: 1904.00026)

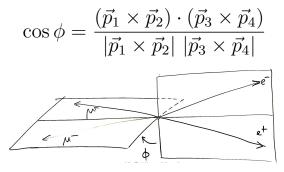
(Not exhaustive list of possibilities!)

ID-ing the Higgs with Kinematic Distributions

- Sensitivity comes from the many kinematic observables and their correlations
- They contain information about CP properties and tensor structure of the Higgs

Searching for CP Violation in *hVV* Couplings

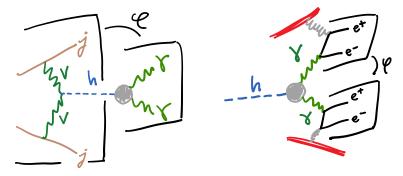
- Smoking gun' of BSM physics which could perhaps be connected with baryogenesis ⇒ matter/anti-matter asymmetry
- Many indirect constraints of CP violation:
 - Constraints from EWPD
 - Measurements of $h \rightarrow SM$ decay rates
 - The most severe come from EDMs
- These are indirect and rely on model dependent assumptions



(see also V. Cirigliano, A. Crivellin, et.al.: 1903.03625)

► We would like direct probes of CP free of these assumptions

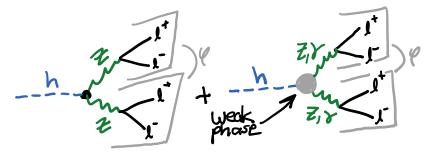
'Conventional' CP Violation via Triple Products


- Typically rely on constructing a CP-odd triple product asymmetry
- Need four visible 4-momenta to construct CPV observable
- One example is the azimuthal angle between decay planes of a four-body Higgs decay such as in h → 4ℓ

For this type of CPV only need distinct 'weak phases' (phases that change sign under CP) in amplitudes which are interfering

Proposals for Direct Probes of $h\gamma\gamma$ CP Properties

- Can we directly probe the CP nature of $h \gamma \gamma$ couplings?
- Various proposals which include:
 - Measuring correlations in $VBF
 ightarrow \gamma\gamma$ (M. Buckley, M. Ramsey-Musolf: 1208.4840)
 - Measuring correlations between photons which convert in detector (F. Bishara, Y. Grossman, R. Harnik, D. Robinson, J.Shu, J. Zupan: 1312.2955)



Interesting possibilities...experimentally challenging measurements

Probing CPV in hZZ and $hV\gamma$ with $h \rightarrow 4\ell$

Sensitivity is driven by interference between tree level ZZ mediated amplitude and higher order $VV = ZZ, Z\gamma, \gamma\gamma$ mediated decays

(Y. Chen, RVM: 1310.2893, Y. Chen, R. Harnick, RVM: 1404.1336, 1503.05855)

The effective couplings to VV provide the potential weak phases
 BUT...CPV observables also possible without 4 visible momenta!

CP Violation Without Triple Products

Consider decay into CP conjugate final states F and F
 Conditions necessary for CPV without triple products:

Interference between different amplitudes

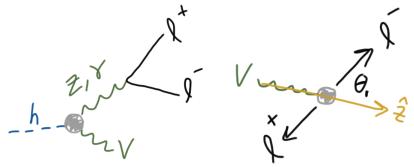
$$\mathcal{M}_F = \mathcal{M}_1 + \mathcal{M}_2$$

• Distinct strong and weak phases for \mathcal{M}_1 and \mathcal{M}_2

$$\mathcal{M}_i = |c_i| e^{i(\delta_i + \phi_i)}$$

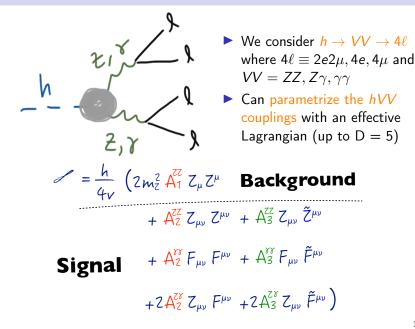
(where $\delta_i \rightarrow \delta_i$ and $\phi_i \rightarrow -\phi_i$ under CP)

Need a CPV observable such as an asymmetry


$$A_{\rm CP} = \frac{d\Gamma_F - d\Gamma_{\bar{F}}}{d\Gamma_F + d\Gamma_{\bar{F}}} \propto |c_1| |c_2| \sin(\delta_1 - \delta_2) \sin(\phi_1 - \phi_2)$$

Note that the last condition requires M_F ≠ CP(M_F) ≡ M_F
 What kind of physics/processes can satisfy these conditions?
 A well known effect in flavor physics and studied in BSM context by J. Berger, et al: 1105.0672

New Observables for CPV in Higgs Decays


(Y. Chen, A. Falkowski, I. Low, RVM: 1405.6723)

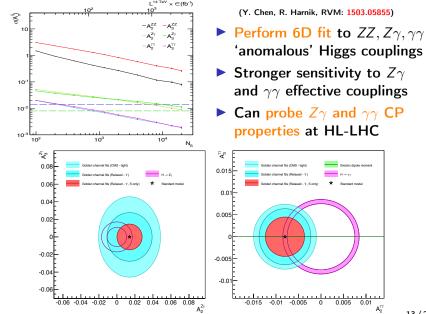
- Our primary example of this type of CPV is $h \rightarrow 2\ell V$ ($V = \gamma, Z$)
- Observable as an asymmetry in polar angle of final state lepton ℓ^-

Generally an asymmetry ≠ CPV (e.g. e⁺e⁻ → f f̄, WW @ LEP)
 Can also utilize interference with BG (for gluon fusion production) (see M. Farina, Y. Grossman, D. J. Robinson: 1503.06470, X. Chen, G. Li, X. Wan: 1705.01254)
 HL-LHC may have a chance to observe this asymmetry

Effective Higgs Couplings at the LHC

Constructing a Likelihood Analysis Framework

A likelihood can be formed out of probability density functions (*pdfs*) using some set of observables as follows


$$L(\vec{A}) = \prod_{\mathcal{O}}^{N} \mathcal{P}(\mathcal{O}|\vec{A})$$

(where \mathcal{O} is set of observables and \vec{A} a set of undetermined parameters) For $pp \to h \to 4\ell$ we construct the pdf from the differential cxn: $P(\vec{p}_T, Y, \phi, \hat{s}, M_1, M_2, \vec{\Omega} | \vec{A}) =$ $W_{\text{prod}}(\vec{p}_T, Y, \phi, \hat{s}) \times \frac{d\sigma_{4\ell}(\hat{s}, M_1, M_2, \vec{\Omega} | \vec{A})}{dM_1^2 dM_2^2 d\vec{\Omega}}$

- Construct ratios $\Lambda = L(A_a)/L(A_b) \Rightarrow$ hypothesis testing
- Perform parameter extraction via maximization of the likelihood

$$\frac{\partial L(\vec{A})}{\partial \vec{A}}\Big|_{\vec{A}=\hat{A}} = 0$$

Probing Effective Couplings at the LHC

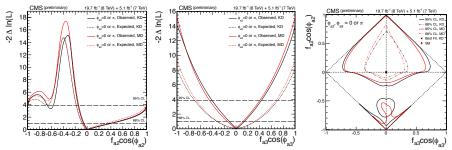
'Detector level' Likelihood

- Of course what we really want is to do all of this at 'detector level'
- Need a likelihood that takes reconstructed observables as input
- ► Can be done via convolution of *analytic* 'generator level' *pdf* with a transfer function $T(\vec{X}^R | \vec{X}^G)$ over generator level observables

$$P(\vec{X}^{\mathrm{R}}|\vec{A}) = \int P(\vec{X}^{\mathrm{G}}|\vec{A})T(\vec{X}^{R}|\vec{X}^{G})d\vec{X}^{\mathrm{G}}$$
$$\vec{X} \equiv (\vec{p}_{T}, Y, \phi, \hat{s}, M_{1}, M_{2}, \vec{\Omega})$$

Note: Not done by MC integration \Rightarrow COV and numerical techniques

► This integration takes us from generator level observables (\vec{X}^G) to detector level (reconstructed) observables (\vec{X}^R)

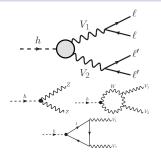

(details can be found in 1401.2077 and technical note 1410.4817)

- $T(\vec{X}^R | \vec{X}^G)$ represents probability to observe \vec{X}^R given \vec{X}^G
- Can be optimized for specific detector and included in convolution

Likelihood Framework in CMS Analysis

CMS PAS HIG-14-014, arXiv: 1411.3441

- ► A multi-dimensional Higgs couplings extraction framework
 - Y. Chen, N. Tran, RVM: arXiv:1211.1959, Y. Chen, RVM: arXiv:1310.2893, Y. Chen, E. DiMarco, J. Lykken, M. Spiropulu, RVM, S. Xie: arXiv:1401.2077, arXiv:1410.4817
- ▶ Used in 2014 CMS study of anomalous hVV couplings in $h \rightarrow 4\ell$



Used in a limited scope and validated with other frameworks
 Can utilize full power of framework in future LHC studies

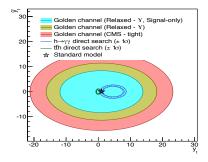
IF TIME PERMITS!

Loop effects in Higgs to four lepton decays

- Various loop effects can enter in hVV couplings
- Dominated by tree level hZZ mediated amplitude

Can study the nature of top and W couplings to the Higgs

$$\mathcal{L}_{ZW} \supset \frac{h}{v} \Big(g_Z m_Z^2 Z^{\mu} Z_{\mu} + 2g_W m_W^2 W^{\mu +} W_{\mu}^- \Big) \cdot \mathcal{L}_t \supset \frac{m_t}{v} h \bar{t} (y_t + i \tilde{y}_t \gamma^5) t$$


Interference between tree level hZZ amplitude and loop diagrams allows us to probe CP properties and phases

Probing Top Yukawa CP Properties in $h \rightarrow 4\ell$


(Y. Chen, D. Stolarski, RVM: 1505:01168)
Compare with other probes such as h → γγ, h → Zγ, and tth

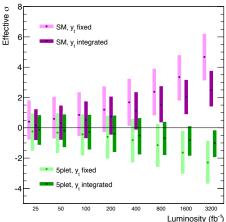
 Qualitatively different probe of the top Yukawa CP properties

(Y. Chen, D. Stolarski, RVM: 1505.01168)

 Not yet sensitive, but should become at high luminosity LHC

The Custodial Nature of the Higgs Boson

• Custodial symmetry ($\rho_{\text{tree}} = 1$) restricts possible values of $\lambda_{WZ} = g_W/g_Z$ to two possibilities (I. Low, J. Lykken, arXiv: 1005.0872):

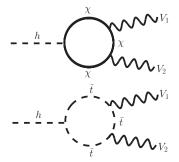

 $\lambda_{WZ} = +1$ (custodial singlet) $\lambda_{WZ} = -1/2$ (custodial fiveplet)

- Custodial fiveplet can be found in custodial Higgs triplet models (H. Georgi and M. Machacek (1985), S. Gori, M. Quiros, RVM, et.al., arXiv: 1308.4025, 1409.5737)
- Custodialy violating effects occur at NLO, but too small to generate O(1) corrections needed to change overall sign
- Thus simply establishing the sign effectively tells us the custodial representation of the Higgs boson

Pinning the Sign Down of λ_{WZ} at the LHC

(Y. Chen, D. Stolarski, RVM, J. Lykken, M. Spiropulu 1608.02159)

• Can establish sign of λ_{WZ} independently of top Yukawa



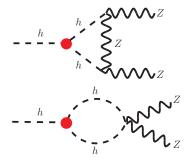
Does not rely on other measurements of Higgs couplings
 Rate information not used, largely independent of production

Searching for SUSY in *hVV* Loops (ongoing)

(Y. Chen, P. Smith, D. Stolarski, RVM: in progress)

- SUSY particles can enter in these loops
- Can search for effects of light squarks, sleptons, charginos, neutralinos, or exotic Higgs bosons

Studying sensitivity at the LHC and beyond


Probing the Higgs Quartic Coupling (ongoing)

(Y. Chen, P. Smith, D. Stolarski, RVM: in progress)

▶ Indirect probes such as $gg \rightarrow h$ and $h \rightarrow \gamma\gamma$ competitive with 'direct' di Higgs searches

(M. Gorbahn, U. Haisch:: 1607.03773, G. Degrassi, P. P. Giardino, F. Maltoni, D. Pagani: 1607.04251)

▶ In $h \rightarrow 4\ell$ quartic coupling enters in hZZ loop

Studying sensitivity at the LHC and beyond

- ▶ $h \rightarrow 4\ell$ an indispensable tool to study Higgs and search for BSM
- Can use h → 4ℓ (and h → 2ℓγ) to study effective Higgs couplings to ZZ, Zγ, and γγ as well as underlying loop effects
- Gives a direct probe of CP properties of the Higgs boson
- ▶ $h \rightarrow 4\ell$ serves as complementary, but qualitatively different measurement to $h \rightarrow Z\gamma$ and $h \rightarrow \gamma\gamma$ two-body decays
- HL-LHC phase should begin probing many possibilities

THANKS!

(Wish you could all be here instead!)