# **Probing SMEFT at CMS**



### **Alexander Grohsjean**



**Higgs Effective Field Theory 2020** 

15<sup>th</sup> - 17<sup>th</sup> April 2020

## **Global SMEFT interpretations in 2020**



several global analysis from theory community but neither ATLAS nor CMS



## **Global SMEFT interpretations in 2020**



several global analysis from theory community but neither ATLAS nor CMS



#### Large amount of individual EFT results



#### SMP:

extensive collection of constraints on both dim.6 and dim.8



#### Higgs:

- first combined STXS results from CMS, CMS PAS HIG-19-005
- ME analysis of HVV production and decay, PRD 99 (2019) 112003

#### ♦ Top:

- analysis of tt production in its spin space,
   PRD 100 (2019) 072002
- differential studies of ttZ production,
   JHEP 03 (2020) 056



#### Large amount of individual EFT results



#### ♦ SMP:

extensive collection of constraints on both dim.6 and dim.8



#### Higgs:

- first combined STXS results from CMS, CMS PAS HIG-19-005
- ME analysis of HVV production and decay, PRD 99 (2019) 112003

#### ♦ Top:

- analysis of tt production in its spin space,
   PRD 100 (2019) 072002
- differential studies of ttZ production,
   JHEP 03 (2020) 056



# **Simplified Template Cross Sections (STXS)**



evolution from inclusive cross section measurements



arXiv:1610.07922

## **Simplified Template Cross Sections (STXS)**



- evolution from inclusive cross section measurements
  - define several kinematic regions at generator level
  - maximize experimental sensitivity to e.g. BSM effects
  - minimize theory dependence





arXiv:1610.07922

#### **Connecting STXS with EFT**



example:  $H \rightarrow \gamma \gamma$ , CMS PAS HIG-18-029



$$\mu_i(c_j) = \frac{\sigma_i^{\text{EFT}}}{\sigma_i^{\text{SM}}} = 1 + \sum_j A_j c_j + \sum_{jk} B_{jk} c_j c_k$$

- coefficients A,B from LO MC
  - Higgs effective Lagragian (SILH basis with flavor-universal couplings)
- parametrization includes deviations from SM Higgs branching ratios
- acceptance of event selection in each decay channel assumed to be SM-like
  - EFT can modify kinematics of decay products and change acceptance,
     particularly significant when intermediate decay states involved

# **Combination input**



#### Refs from CMS PAS HIG-19-005

| Analysis                                   | Decay tags                                                                       | Production tags                                                                                            | Luminosity (fb <sup>-1</sup> ) | References     |
|--------------------------------------------|----------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|--------------------------------|----------------|
| $H 	o \gamma \gamma$                       | $\gamma\gamma$                                                                   | ggH, $p_T(H) \times N$ -jet bins VBF, $p_T(H jj)$ bins                                                     | 77.4                           | [53]           |
|                                            | • •                                                                              | ttH                                                                                                        | 35.9, 41.5                     | [54], [55]     |
| ${\tt If} \to {\sf ZZ}^{(*)} \to 4\ell$    | 4μ, 2e2μ/2μ2e, 4e                                                                | ggH, $p_T(H) \times N$ -jet bins<br>VBF, $m_{jj}$ bins<br>VH hadronic<br>VH leptonic, $p_T(V)$ bins<br>ttH | 137                            | [56]           |
|                                            | eμ/μe                                                                            | ggH ≤ 2-jets<br>VBF                                                                                        |                                |                |
| $H \to WW^{(*)} \to \ell \nu  \ell \nu$    | ee+μμ<br>eμ+jj<br>3ℓ                                                             | ggH ≤ 1-jet<br>VH hadronic<br>WH leptonic                                                                  | 35.9                           | [57]           |
|                                            | $4\ell$                                                                          | ZH leptonic                                                                                                |                                |                |
| $H \to \tau\tau$                           | 011 07 117 7 7                                                                   | $ggH$ , $p_T(H) \times N$ -jet bins<br>VH hadronic<br>VBF                                                  | 77.4                           | [58]           |
|                                            | $e\mu$ , $e\tau_h$ , $\mu\tau_h$ , $\tau_h\tau_h$                                | VH, high- $p_{\rm T}({\rm V})$                                                                             | 35.9                           | [59]           |
| H 	o bb                                    | $W(\ell\nu)H(bb)$<br>$Z(\nu\nu)H(bb), Z(\ell\ell)H(bb)$                          | WH leptonic<br>ZH leptonic                                                                                 | 35.9, 41.5                     | [60], [61]     |
|                                            | bb                                                                               | ttH, $t\bar{t} \rightarrow 0$ , 1, $2\ell + \text{jets}$                                                   | 77.4                           | [62]           |
|                                            |                                                                                  | ggH, high- $p_T(H)$ bins                                                                                   | 35.9                           | not considered |
| ttH production with H $ ightarrow$ leptons | $2\ell ss, 3\ell, 4\ell,$ $1\ell + 2\tau_h, 2\ell ss + 1\tau_h, 3\ell + 1\tau_h$ | ttH                                                                                                        | 35.9, 41.5                     | [64], [65]     |
| If $\rightarrow \mu\mu$                    | μμ                                                                               | ggH<br>VBF                                                                                                 | 35.9 r                         | not considered |

#### **Selected EFT coefficients**



- total of 15 dim-6 operators affecting Higgs physics
  - neglect CP-odd ones (-4)
  - neglect Higgs self-couplings (-1)
  - neglect Higgs field normalization as sensitivity not good enough for global change in rate (-1)
  - Cww + cB = 0 from precision electroweak parameter S: use only cWW-cB (-1)
  - drop CHB due to large degeneracies
     with cHW and cWW-cB

$$\mathcal{O}_{g} = |H|^{2} G_{\mu\nu}^{A} G^{A\mu\nu}$$

$$\tilde{\mathcal{O}}_{g} = |H|^{2} G_{\mu\nu}^{A} \tilde{G}^{A\mu\nu}$$

$$\mathcal{O}_{\gamma} = |H|^{2} B_{\mu\nu} B^{\mu\nu}$$

$$\tilde{\mathcal{O}}_{\gamma} = |H|^{2} B_{\mu\nu} \tilde{B}^{\mu\nu}$$

$$\mathcal{O}_{u} = y_{u} |H|^{2} \bar{Q}_{L} H^{\dagger} u_{R} + \text{h.c.}$$

$$\mathcal{O}_{d} = y_{d} |H|^{2} \bar{Q}_{L} H d_{R} + \text{h.c.}$$

$$\mathcal{O}_{\ell} = y_{\ell} |H|^{2} \bar{L}_{L} H \ell_{R} + \text{h.c.}$$

$$\mathcal{O}_{H} = (\partial^{\mu} |H|^{2})^{2}$$

$$\mathcal{O}_{6} = (H^{\dagger} H)^{3}$$

$$\mathcal{O}_{HW} = i (D^{\mu} H)^{\dagger} \sigma^{a} (D^{\nu} H) W_{\mu\nu}^{a}$$

$$\tilde{\mathcal{O}}_{HW} = i (D^{\mu} H)^{\dagger} (D^{\nu} H) B_{\mu\nu}$$

$$\mathcal{O}_{HB} = i (D^{\mu} H)^{\dagger} (D^{\nu} H) B_{\mu\nu}$$

$$\tilde{\mathcal{O}}_{HB} = i (D^{\mu} H)^{\dagger} (D^{\nu} H) \tilde{B}_{\mu\nu}$$

$$\mathcal{O}_{W} = i (H^{\dagger} \sigma^{a} \overleftrightarrow{D}^{\mu} H) D^{\nu} W_{\mu\nu}^{a}$$

$$\mathcal{O}_{B} = i (H^{\dagger} \overrightarrow{D}^{\mu} H) \partial^{\nu} B_{\mu\nu}$$

probing 7 remaining operators

#### **EFT constraints from combined STXS measurements**





- analysis of up to 137 fb<sup>-1</sup>
- new analyses specifically targeting ttH production
- inclusion of additional decay channels:

$$H \rightarrow WW, H \rightarrow b\overline{b}$$
 and  $H \rightarrow \tau\tau$ 

significant improvements over previous results

### **Operator correlation**



- large correlation of c<sub>HW</sub> and c<sub>WW</sub>-c<sub>B</sub>:
   little differential info in VH analysis
- c<sub>G</sub> leads to an increased cross section which cannot be differentiate from Γ<sub>tot</sub>
   (where c<sub>A</sub> and c<sub>I</sub> contribute little)



correlations well understood

#### Large amount of individual EFT results



#### ♦ SMP:

extensive collection of constraints on both dim.6 and dim.8



#### Higgs:

- first combined STXS results from CMS, CMS PAS HIG-19-005
- ME analysis of HVV production and decay, PRD 99 (2019) 112003

#### ♦ Top:

- analysis of tt production in its spin space,
   PRD 100 (2019) 072002
- differential studies of ttZ production,
   JHEP 03 (2020) 056



## ME based approaches for EFT



- matrix-element methods well established long before LHC in
  - high precision measurements
  - searches for rare, new physics
- measurement of anomalous HVV couplings at CMS benefits from both aspects
  - distinguish H production mechanism (VBF, VH, ggH), e.g. sig = VBF vs alt = ggH to categorize events

$$\mathcal{D}_{ ext{alt}}\left(oldsymbol{\Omega}
ight) = rac{\mathcal{P}_{ ext{sig}}\left(oldsymbol{\Omega}
ight)}{\mathcal{P}_{ ext{sig}}\left(oldsymbol{\Omega}
ight) + \mathcal{P}_{ ext{alt}}\left(oldsymbol{\Omega}
ight)}$$

- isolate signal from background
- measure anomalous HVV (VV=ZZ / Zγ\*/γ\*γ\*) couplings

#### Parametrization of anomalous couplings



→ amplitude w./ three tensor structures with expansion of coefficients up to (q²/Λ²)



|    | κ <sup>V V</sup> 1                     | $\kappa^{VV}_{2}$                     | a <sup>v v</sup>                       | a <sup>v v</sup> 3 |
|----|----------------------------------------|---------------------------------------|----------------------------------------|--------------------|
| ZZ | -exp(iφ <sup>ZZ</sup> <sub>Λ1</sub> )  | −exp(iφ <sup>ZZ</sup> <sub>∧1</sub> ) | a <sup>zz</sup> <sub>2</sub>           | a <sup>zz</sup> 3  |
| Ζγ | $-exp(i\phi^{Z_{\gamma}}_{\Lambda 1})$ | 0                                     | poor with respect to on-shell $\gamma$ |                    |
| γγ | 0                                      | 0                                     |                                        |                    |

constraint 4 anomalous couplings

### **Event categorization**



- lepton final state: H → 4e, 4µ, 2e2µ
- on-shell (104 GeV <  $m_{4l}$  < 140 GeV) and off-shell region ( $m_{4l}$  > 220 GeV)
- production mode

| Category  | VBF-tagged                                                                                 | VH-tagged                                                                                                                                                                        | Untagged       |
|-----------|--------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|
| Selection | $\mathcal{D}_{2	ext{jet}}^{	ext{VBF}}$ or $\mathcal{D}_{2	ext{jet}}^{	ext{VBF,BSM}} > 0.5$ | $\mathcal{D}_{	ext{2jet}}^{	ext{WH}}$ or $\mathcal{D}_{	ext{2jet}}^{	ext{WH,BSM}}$ , or $\mathcal{D}_{	ext{2jet}}^{	ext{ZH}}$ or $\mathcal{D}_{	ext{2jet}}^{	ext{ZH,BSM}} > 0.5$ | Rest of events |





### **Coupling extraction**



• constraint fraction  $f_{ai}$  of anomalous coupling as well as its complex sign  $\cos(\phi_{ai})$  from maximum likehood fit of signal and background probabilities for process j in category k (M=4 for VBF/VH, M=2 for ggH)

$$\sum_{m=0}^{M} \mathcal{P}_{jk,m}^{\text{sig/int}}\left(\vec{x}; \vec{\xi}_{jk}\right) f_{ai}^{\frac{m}{2}} (1 - f_{ai})^{\frac{M-m}{2}} \cos^{m}(\phi_{ai})$$



## Measured couplings





# **Measured couplings**



combination of on-shell and off-shell region

$$\sigma_{{
m vv}
ightarrow H
ightarrow 4\ell}^{
m off\text{-}shell} \propto \mu_{{
m vv}H} \; \Gamma_{
m H}$$

| Parameter                                                            | Scenario                                                  | Observed                                       | Expected                                       |
|----------------------------------------------------------------------|-----------------------------------------------------------|------------------------------------------------|------------------------------------------------|
| $f_{a3}\cos\left(\phi_{a3}\right)$                                   | on-shell                                                  | $-0.0001^{+0.0004}_{-0.0015} [-0.163, 0.090]$  | $0.0000^{+0.0019}_{-0.0019}$ [-0.082, 0.082]   |
|                                                                      | any $\Gamma_{\mathrm{H}}$                                 | $0.0000^{+0.0003}_{-0.0010} [-0.0165, 0.0087]$ | $0.0000^{+0.0015}_{-0.0015}$ [-0.038, 0.038]   |
|                                                                      | $\Gamma_{\mathrm{H}} = \Gamma_{\mathrm{H}}^{\mathrm{SM}}$ | $0.0000^{+0.0003}_{-0.0009} [-0.0067, 0.0050]$ | $0.0000^{+0.0014}_{-0.0014} [-0.0098, 0.0098]$ |
| $f_{a2}\cos\left(\phi_{a2}\right)$                                   | on-shell                                                  | $0.0004^{+0.0026}_{-0.0006} [-0.0055, 0.0234]$ | $0.0000^{+0.0030}_{-0.0023}$ [-0.021, 0.035]   |
|                                                                      | any $\Gamma_{\mathrm{H}}$                                 | $0.0004^{+0.0026}_{-0.0006} [-0.0035, 0.0147]$ | $0.0000^{+0.0019}_{-0.0017}$ [-0.015, 0.021]   |
|                                                                      | $\Gamma_{\mathrm{H}} = \Gamma_{\mathrm{H}}^{\mathrm{SM}}$ | $0.0005^{+0.0025}_{-0.0006} [-0.0029, 0.0129]$ | $0.0000^{+0.0012}_{-0.0016}$ [-0.010, 0.012]   |
| $f_{\Lambda 1}\cos\left(\phi_{\Lambda 1}\right)$                     | on-shell                                                  | $0.0002^{+0.0030}_{-0.0009} [-0.209, 0.089]$   | $0.0000^{+0.0012}_{-0.0006}$ [-0.059, 0.032]   |
|                                                                      | any $\Gamma_{\mathrm{H}}$                                 | $0.0001^{+0.0015}_{-0.0006} [-0.090, 0.059]$   | $0.0000^{+0.0013}_{-0.0007}$ [-0.017, 0.019]   |
|                                                                      | $\Gamma_{\mathrm{H}} = \Gamma_{\mathrm{H}}^{\mathrm{SM}}$ | $0.0001^{+0.0015}_{-0.0005} [-0.016, 0.068]$   | $0.0000^{+0.0013}_{-0.0006}$ [-0.015, 0.018]   |
| $f_{\Lambda 1}^{Z\gamma}\cos\left(\phi_{\Lambda 1}^{Z\gamma}\right)$ | on-shell                                                  | $0.0000^{+0.3554}_{-0.0087} [-0.17, 0.61]$     | $0.0000^{+0.0091}_{-0.0100}$ [-0.098, 0.343]   |

#### **Combined results**



- on-shell results combined with  $H \to \tau \tau$  analysis
- significantly increased sensitivity in the region around 0
  - driven by production information where  $H \rightarrow \tau \tau$  dominates over  $H \rightarrow 4I$

| Parameter                                                                   | Observed/ $(10^{-3})$  |             | Expected/ $(10^{-3})$  |             |
|-----------------------------------------------------------------------------|------------------------|-------------|------------------------|-------------|
|                                                                             | 68% CL                 | 95% CL      | 68% CL                 | 95% CL      |
| $f_{a3}\cos(\phi_{a3})$                                                     | $0.00 \pm 0.27$        | [-92, 14]   | $0.00 \pm 0.23$        | [-1.2, 1.2] |
| $f_{a2}\cos(\phi_{a2})$                                                     | $0.08^{+1.04}_{-0.21}$ | [-1.1, 3.4] | $0.0^{+1.3}_{-1.1}$    | [-4.0, 4.2] |
| $f_{\Lambda 1}\cos(\phi_{\Lambda 1})$                                       | $0.00^{+0.53}_{-0.09}$ | [-0.4, 1.8] | $0.00^{+0.48}_{-0.12}$ | [-0.5, 1.7] |
| $f_{\Lambda 1}^{\mathrm{Z}\gamma}\cos(\phi_{\Lambda 1}^{\mathrm{Z}\gamma})$ | $0.0_{-1.3}^{+1.1}$    | [-6.5, 5.7] | $0.0^{+2.6}_{-3.6}$    | [-11, 8.0]  |

#### Large amount of individual EFT results



#### ♦ SMP:

extensive collection of constraints on both dim.6 and dim.8



#### Higgs:

- first combined STXS results from CMS, CMS PAS HIG-19-005
- ME analysis of HVV production and decay, PRD 99 (2019) 112003

#### ♦ Top:

- analysis of tt production in its spin space,
   PRD 100 (2019) 072002
- differential studies of ttZ production,
   JHEP 03 (2020) 056



## Probing EFT using tt spin density matrix



- orthogonal to pure rate changes or enhancements in particle momentum spectrum
- high sensitivity to EFT, e.g. chromomagnetic top dipole moment (CMDM): c<sub>tG</sub> O<sub>tG</sub> with

$$O_{tG} = y_t g_s(\overline{Q}\sigma^{\mu\nu}T^a t)\tilde{\phi}G^a_{\mu\nu}$$



15 coefficients completely characterize spin dependence of tt production

$$\frac{1}{\sigma}\frac{\mathsf{d}^4\sigma}{\mathsf{d}\Omega_1\mathsf{d}\Omega_2} = \frac{1}{(4\pi)^2}\Big(1+\vec{\mathsf{B}}_1\cdot\hat{\boldsymbol{\ell}}^1+\vec{\mathsf{B}}_2\cdot\hat{\boldsymbol{\ell}}^2-\hat{\boldsymbol{\ell}}^1\cdot\mathsf{C}\cdot\hat{\boldsymbol{\ell}}^2\Big)$$

1
$$\overrightarrow{B}_{1/2} = \begin{pmatrix} x \\ x \\ x \end{pmatrix}$$

$$C = \begin{pmatrix} x & x & x \\ x & x & x \\ x & x & x \end{pmatrix}$$
spin-independent top polarization spin correlation





construct orthonormal basis





- construct orthonormal basis
- estimate angles in  $t/\bar{t}$  rest frames  $\rightarrow$  kinematic reconstruction











- construct orthonormal basis
- estimate angles in t/ $\bar{t}$  rest frames  $\rightarrow$  kinematic reconstruction
- correct acceptance and detector effects (parton-level unfolding)



#### **Results: polarization vector**



- consistent with zero for each axis
- not yet sensitive to small polarization in the SM
- dominant uncertainty from JES (top rest frame reconstruction)

$$\frac{1}{\sigma} \frac{\mathsf{d}^4 \sigma}{\mathsf{d}\Omega_1 \mathsf{d}\Omega_2} = \frac{1}{(4\pi)^2} \left( 1 + \vec{\mathsf{B}}_1 \cdot \hat{\ell}^1 + \vec{\mathsf{B}}_2 \cdot \hat{\ell}^2 - \hat{\ell}^1 \cdot \mathsf{C} \cdot \hat{\ell}^2 \right)$$





### Results: diagonal correlation



- correlations along each axis consistent with SM expectations
- dominant uncertainties from background and top p<sub>⊤</sub> modeling



$$\frac{1}{\sigma}\frac{\mathrm{d}^4\sigma}{\mathrm{d}\Omega_1\mathrm{d}\Omega_2} = \frac{1}{(4\pi)^2}\Big(1+\vec{\mathsf{B}}_1\cdot\hat{\boldsymbol{\ell}}^1+\vec{\mathsf{B}}_2\cdot\hat{\boldsymbol{\ell}}^2-\hat{\boldsymbol{\ell}}^1 \cdot \vec{\boldsymbol{\ell}}^2\Big)$$





## Maximal sensitivity to spin correlation



- provided by full lepton (in top parent rest frame) opening angle
- most precise measurement to date (5% uncertainty)



$$\frac{1}{\sigma} \frac{\mathsf{d}^4 \sigma}{\mathsf{d}\Omega_1 \mathsf{d}\Omega_2} = \frac{1}{(4\pi)^2} \Big( 1 + \vec{\mathsf{B}}_1 \cdot \hat{\ell}^1 + \vec{\mathsf{B}}_2 \cdot \hat{\ell}^2 - \hat{\ell}^1 \cdot \vec{\mathsf{\ell}}^2 \Big)$$





Tr

### Constraining top chromomagnetic dipole moment



$$O_{tG} = y_t g_s(\overline{Q}\sigma^{\mu\nu}T^a t)\tilde{\phi}G^a_{\mu\nu}$$

- EFT predictions based on NLO MC simulation
  - apply NNLO/NLO k-factor of 1.22 from SM calculation
- 95% CL limits from simultaneous χ² fit
  - to normalized cos(φ), C<sub>kk</sub>, C<sub>nn</sub>, C<sub>rk</sub> + C<sub>kr</sub>
  - including full covariance matrix V<sub>ii</sub>

$$\chi^2 = \sum_{i=1}^{N} \sum_{j=1}^{N} \left( \operatorname{data}_{i} - \operatorname{pred}_{i} \right) \cdot \left( \operatorname{data}_{j} - \operatorname{pred}_{j} \right) \cdot V_{ij}^{-1}$$

 strongest direct limits to date on top quark CMDM

$$-0.10 < C_{tG}/\Lambda^2 < 0.22 \text{ TeV}^{-2}$$



# **Beyond top CMDM**



- total of 11 EFT operators affecting hadronic tt production
  - 10 of them impact spin density matrix (LO prediction from JHEP 12 (2015) 026)
  - choose 4 best observables to constraint each operator



| Operator                            | Lagrangian                                                                                                                                                     | Vertex   | Direct effects                           |
|-------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|------------------------------------------|
| $\hat{\mu}_{t}$                     | $g_1ig[ar{t}\sigma^{\mu u}\mathcal{T}^at G^a_{\mu u}ig]$                                                                                                       | gtī ggtī | $c_{ii}$ , $c_{rk} + c_{kr}$ , $c_{hel}$ |
| $\hat{d_{t}}$                       | $g_1ig[ar{t} i\sigma^{\mu u}\gamma_5 T^a t G^a_{\mu u}ig]$                                                                                                     | gtī ggtī | $c_{nr} - c_{rn}$ , $c_{nk} - c_{kn}$    |
| Ĉ                                   | $g_2 \left[ \mathcal{O} + \mathcal{O}^\dagger  ight]$ , $\mathcal{O} = i [\bar{\mathrm{t}} \gamma^\mu \gamma_5 T^a D^ u \mathrm{t}] G^a_{\mu u}$               | ggtī     | $c_{nr}-c_{rn}$ , $c_{nk}-c_{kn}$        |
| $\hat{c}_{-+}$                      | $g_2 i \Big[ \mathcal{O}_+ - \mathcal{O}_+^\dagger \Big]$ , $\mathcal{O}_+ = [\overline{t} \gamma^\mu \mathcal{T}^a \mathcal{D}^\nu t] \mathcal{G}_{\mu  u}^a$ | ggtī     | b <sub>n</sub>                           |
| Ĉ <sub>VV</sub>                     | $g_3 q_V t_V$                                                                                                                                                  | qq̄tt̄   | $c_{ii}$ , $c_{rk} + c_{kr}$ , $c_{hel}$ |
| $\hat{c}_{VA}$                      | $g_3 q_V t_A$                                                                                                                                                  | qq̄tt̄   | $b_k^a$ , $b_r^a$                        |
| Ĉ <sub>AV</sub>                     | $g_3$ q $_A$ t $_V$ weak isospin 0                                                                                                                             | qq̄tt̄   | $b_{k^*}^a, b_{r^*}^a$                   |
| $\hat{c}_{AA}$                      | $g_3$ q $_A$ t $_A$                                                                                                                                            | qq̄tt̄   | -                                        |
| $\hat{c}_1$                         | $g_{4} \left[ q_{V}^{\prime} t_{V} + q_{A}^{\prime} t_{V}  ight]$                                                                                              | qq̄tt̄   | $c_{ii}$ , $c_{rk} + c_{kr}$ , $c_{hel}$ |
| Ĉ <sub>3</sub>                      | $g_{4} [q_{V}'t_{A} + q_{A}'t_{V}]$ weak isospin 1                                                                                                             | qq̄tt̄   | $b_k^a$ , $b_r^a$                        |
| $\hat{c}_1 - \hat{c}_2 + \hat{c}_3$ | $\hat{c}_2 = g_4 ig[ 	extstyle q_A' 	extstyle t_A - 	extstyle q_A' 	extstyle 	extstyle t_V ig]$                                                                | qq̄tt̄   | $b_{k^*}^a, b_{r^*}^a$                   |

definition following JHEP 12 (2015) 026 table by A. Anuar

#### **Beyond top CMDM**



- total of 11 EFT operators affecting hadronic tt production
  - 10 of them impact spin density matrix (LO prediction from JHEP 12 (2015) 026 )
  - choose 4 best observables to constraint each operator



## **Beyond top CMDM**



- total of 11 EFT operators affecting hadronic tt production
  - 10 of them impact spin density matrix (LO prediction from JHEP 12 (2015) 026 )
  - choose 4 best observables to constraint each operator
  - 2 dimensional contours provided where needed



#### Large amount of individual EFT results



#### ♦ SMP:

extensive collection of constraints on both dim.6 and dim.8



#### Higgs:

- first combined STXS results from CMS, CMS PAS HIG-19-005
- ME analysis of HVV production and decay, PRD 99 (2019) 112003

#### ♦ Top:

- analysis of tt production in its spin space,
   PRD 100 (2019) 072002
- differential studies of ttZ production,
   JHEP 03 (2020) 056



DESY.

- electroweak-top interactions from tīZ production
  - split events with 3/4 leptons into jet/b-jet multiplicity bins







- electroweak-top interactions from tīZ production
- translate cross-section measurements into limits
  - 4 independent EFT operators

$$c_{tZ} = \operatorname{Re} \left( -\sin \theta_{W} C_{uB}^{(33)} + \cos \theta_{W} C_{uW}^{(33)} \right)$$

$$c_{tZ}^{[I]} = \operatorname{Im} \left( -\sin \theta_{W} C_{uB}^{(33)} + \cos \theta_{W} C_{uW}^{(33)} \right)$$

$$c_{\phi t} = C_{\phi t} = C_{\phi u}^{(33)}$$

$$c_{\phi Q}^{-} = C_{\phi Q} = C_{\phi q}^{1(33)} + C_{\phi q}^{3(33)}$$

■ 0 : assume SM Wtb vertex

tensor couplings (quad.):  $C_{tZ}/C_{tZ}^{[l]}$ 

$$O_{uB}^{(ij)} = (\bar{q}_i \sigma^{\mu\nu} u_j) \quad \tilde{\varphi} B_{\mu\nu}$$
$$O_{uW}^{(ij)} = (\bar{q}_i \sigma^{\mu\nu} \tau^I u_j) \, \tilde{\varphi} W_{\mu\nu}^I$$

vector couplings (lin.):  $C_{\Phi t}/C_{\Phi Q}$ 

$$O_{\varphi u}^{(ij)} = (\varphi^{\dagger} \overleftrightarrow{iD}_{\mu} \varphi)(\bar{u}_{i} \gamma^{\mu} u_{j})$$

$$O_{\varphi q}^{1(ij)} = (\varphi^{\dagger} \overleftrightarrow{iD}_{\mu} \varphi)(\bar{q}_{i} \gamma^{\mu} q_{j})$$

$$O_{\varphi q}^{3(ij)} = (\varphi^{\dagger} \overleftrightarrow{iD}_{\mu}^{I} \varphi)(\bar{q}_{i} \gamma^{\mu} \tau^{I} q_{j})$$



- electroweak-top interactions from tīZ production
- translate cross-section measurements into limits
  - 4 independent EFT operators
  - main impact on  $p_T^z$  and  $cos(\Phi_Z^*) \rightarrow use$  to reweight NLO SM simulations





tensor couplings (quad.):  $C_{tZ}/C_{tZ}^{[I]}$ 

$$O_{uB}^{(ij)} = (\bar{q}_i \sigma^{\mu\nu} u_j) \quad \tilde{\varphi} B_{\mu\nu}$$
$$O_{uW}^{(ij)} = (\bar{q}_i \sigma^{\mu\nu} \tau^I u_j) \, \tilde{\varphi} W_{\mu\nu}^I$$

vector couplings (lin.):  $C_{\Phi t}/C_{\Phi Q}$ 

$$O_{\varphi u}^{(ij)} = (\varphi^{\dagger} i \overrightarrow{D}_{\mu} \varphi) (\bar{u}_{i} \gamma^{\mu} u_{j})$$

$$O_{\varphi q}^{1(ij)} = (\varphi^{\dagger} i \overrightarrow{D}_{\mu} \varphi) (\bar{q}_{i} \gamma^{\mu} q_{j})$$

$$O_{\varphi q}^{3(ij)} = (\varphi^{\dagger} i \overrightarrow{D}_{\mu}^{I} \varphi) (\bar{q}_{i} \gamma^{\mu} \tau^{I} q_{j})$$



- electroweak-top interactions from t̄Z production
- translate cross-section measurements into limits

$$c_{tZ} = \operatorname{Re} \left( -\sin \theta_{W} C_{uB}^{(33)} + \cos \theta_{W} C_{uW}^{(33)} \right)$$

$$c_{tZ}^{[I]} = \operatorname{Im} \left( -\sin \theta_{W} C_{uB}^{(33)} + \cos \theta_{W} C_{uW}^{(33)} \right)$$

$$c_{\phi t} = C_{\phi t} = C_{\phi u}^{(33)}$$

$$c_{\phi Q}^{-} = C_{\phi Q} = C_{\phi q}^{1(33)}$$

additional bins of p<sub>T</sub><sup>z</sup> and cos(Φ<sub>z</sub>\*) for enhanced sensitivity



## Limits on anomalous top-Z couplings



20% reduction from  $p_T^z/\cos(\Phi_z^*)$ 



## Limits on anomalous top-Z couplings





most stringent direct constraints on tZ couplings

### **Summary**



- precision SMEFT measurements will be an essential part of the LHC heritage
- the LHC has entered an EFT era
  - large variety of 13 TeV results already available
- first initiatives for global LHC SMEFT measurements established
  - need to combine efforts across existing research groups
  - right time to re-think and improve research strategies
  - still many unexplored processes
- expect first global CMS results for HEFT 2021