Status of the DUNE experiment

Guang Yang, Stony Brook University on behalf of the DUNE collaboration NuFact 2021 Sept. 6th 2021

Important questions to be answered

- Facts about neutrino oscillation that we know
 - Neutrinos interact in flavor states and propagate in mass states→ oscillation nature
 - All three mixing angles measured non-zero→ room for a CP violation phase measurement
- Key questions to be answered by DUNE long-baseline program
 - How well do we know about the CP violation phase? $\delta_{CP} = 0$ or not?
 - What is the mass hierarchy? Normal or inverted?
 - How well can we disentangle the octant of θ_{23} degeneracy?

What we know from current long-baseline experiments?

 T2K (Ciro's talk an hour ago) and NovA (Dan's talk half an hour ago) have great sensitivity to the CP violation measurement → not enough to conclude, yet

What we know from current long-baseline experiments?

- NOvA and T2K are off-axis-> narrow flux peak intentionally
- Bi-event plot presenting almost the full power of T2K and NOvA, but not for those with capability of spectral measurement
- DUNF to utilize a wide-band beam mapping out more than 1 oscillation period -> spectrum experiment

One-slide DUNE

Broad band neutrino and antineutrino beam

near detector measuring unoscillated **PARTICLE** spectra and DETECTOR controlling systematics

DUNE collaboration

- > 1300 Collaborators
- > 200 institutions
- 33 countries + CERN

A long list of oral and poster presentations in NuFact2021

Last in-person photo in Jan. 2020

Beamline

The Proton
 Improvement Plan II (PIP-II), an enhancement to the Fermilab accelerator complex, powering the world's most intense high-energy

neutrino beam-> 1.2 MW upgradable to 2.4 MW

 The LBNF beam optimization completed by scanning different horn and target geometries to identify those that produced the optimal sensitivity to the CP violation phase

One-slide DUNE

Broad band neutrino and antineutrino beam

systematics

DUNE near detectors (ND)

- ND to constrain the cross section, flux, and energy response independently as good as possible
 - Multiple methods for measuring neutrino fluxes: target independent
 - Better detail in neutrino interaction than the far detector (FD): same target material but better phase space coverage, particle ID, energy reconstruction etc.
 - Capable to measure events in a similar way to the FD: similar technology
- A hybrid detector with three components:
 A liquid argon TPC, a gaseous argon
 TPC and an on-axis detector

ND CDR: arXiv:1606.09550

DUNE ND LAr and GAr

- LAr: Primary target, with 50t fiducial mass divided into 35 optically separated modules
 - Charge readout: a novel pixelated anode
 - Light readout: rejection of unassociated charge signals (pile-up)
- GAr: Extending the capabilities of the ND v-Ar interaction detection
 - Measuring the momentum and sign of charged particles exiting ND LAr
 - As a target, extending charged particle measurement capabilities to lower energies than achievable in the far or near LAr detectors

A full spill in LAr

 ν_{μ} CC with five protons in GAr

DUNE PRISM

- Moving LAr and GAr off-axis-> Sampling the neutrino flux
 - Mapping between the true and reconstructed neutrino energy within the near detector→ Constructing Mono-energetic beam
 - A direct way of extrapolating near detector measurements to the far detector→ Reducing the model dependence on the neutrino interaction cross section

ND flux for different off-axis locations

FD oscillated flux matching

DUNE ND SAND (System for on-Axis Neutrino Detection)

- On-axis permanently
 - Monitoring the beam stability
 - Providing absolute flux measurement
 - A different target material to validate the neutrino interaction modeling
- KLOE magnet + ECAL + inner tracker
 + LAr target
 - A Superconducting magnet + electromagnetic calorimeter re-purposed from the KLOE experiment

DUNE ND prototyping

- ND LAr demonstrator program
 - SingleCube Demonstrator

The 2x2 cryostat and cryogenics system at the Univ. of Bern

Validating integrated performance of charge and light readout

- ArgonCube 2x2 Demonstrator
 - Verifying technical readiness of the ND LArTPC module design
 - Including Minerva components with NuMI beam to form ProtoDUNE-ND
- Full-scale Demonstrator
 - Providing an engineering validation of the full-scale production, assembly and testing processes

One-slide DUNE

Broad band neutrino and antineutrino beam

PARTICLE PARTICLE DETECTOR Controlling systematics

At SURF (Sanford Underground Research Facility)

- Gold mine repurposed into underground laboratory
- Deepest laboratory in the US:
 - 1.5 km underground
 - Three main caverns: 4 detectors halls in 2 cavers and 1 support cavern
 - Excavation started
 - FD first module installation mid-2020's

Davis Campus:

- LUX
- Majorana demo.
- LZ ...

DUNE far detector

Four 17kt modules

Module 1, 2 and 3: Liquid Argon TPC

Module 4: Module of Opportunity

- Module 1 technology: 3.6 m horizontal drift with vertical anode and cathode planes and photon detector
- Module 2 technology:

 6.5 m vertical drift with horizontal PCB (Printed Circuit Board) anode and cathode planes and photon detector

FD TDR: arXiv.2002.03005

FD module 2: vertical drift

- ProtoDUNE used to demonstrate that electron lifetimes of tens of ms are achievable
- · Charge readout:
 - Drift along vertical direction and cathode plane in the middle
 - Readout on strips etched on PCBs
 - Two induction and one collection readout
 - Electronics for top drift volume accessible
 - Cathode near -300 kV for a drift field of 450 V/cm

DUNE far detector event reconstruction

- Various complimentary algorithms
 - 2D clustering on each plane
 → 3D
 - Direct 3D hit clustering
 - Deep-learning (convolutional visual network)
- Tracks based on range (contained) or multiple Coulomb scattering (exiting)
- Showers based on calorimetry
- > 90% peak efficiency for both muon and electron neutrinos

DUNE FD prototyping

- Two kt sale prototypes exposed to the charged particle beam at **CERN**
 - ProtoDUNE single phase (SP) 2018-2020, Phase-II in late 2022
 - Dual phase (DP) 2019-2020

DUNE FD prototyping

- ProtoDUNE SP aiming at production and installation demonstration, detector performance validation with cosmics and beam charged particles and photon detector demonstration
 - Stability: > 99% HV uptime, > 99% channels alive, high purity (>30 ms e-lifetime for most runs)
 - Low noise: S/N > 10 for induction wires and > 40 for collection wires
 - Test of full analysis chain

JINST 15 (2020) P12004

One-slide DUNE

Broad band neutrino and antineutrino beam

near detector measuring unoscillated **PARTICLE** spectra and **DETECTOR** controlling systematics

DUNE long-baseline sensitivity

100 kt-MW-years

10

- Simultaneously fitting two disappearance and two appearance samples
- Full treatment of the systematic uncertainties with constraints from ND
- Order of 10,000 and 1,000 events for disappearance and appearance in 7 years

DUNE long-baseline sensitivity

• δcp sensitivity for normal ordering and inverted ordering

EPJC 80, Article number: 978 (2020)

CP Violation Sensitivity

CP Violation Sensitivity

DUNE long-baseline sensitivity

Mass hierarchy sensitivity

Mass Ordering Sensitivity

EPJC 80, Article number: 978 (2020)

Mass Ordering Sensitivity

More in Chris Marshall's DUNE long-baseline talk: Sep. 8th 2021, 13:24 CET

Beyond Long-baseline Neutrino Oscillation

• DUNE covering a broad range of measurements: supernova neutrinos, solar neutrons etc.

- DUNE providing a wide range of BSM measurements
 - Baryon number violation such as proton decay: sensitive to K decay
 - Sterile neutrinos: Combination of ND and FD to boost the sensitivity to the sterile mixing
 - Dark matter: ND to detect the beam-related and FD to detect the external dark matter
 - Non-standard interaction, CPT violation, Non-unitarity of neutrino mixing matrix, neutrino trident at ND etc.
 - More results in EPJC 81 (2021) 4,322, EPJC 81 (2021) 5,423.

Summary

- DUNE providing a unique opportunity to measure the CP violation and mass hierarchy
 - Broadband high-intensity beam
 - Complex near detector able to disentangle degenerate systematic uncertainties
 - Massive deep-underground far detectors with a very long baseline
- DUNE being working hard toward successful measurements
 - TDR for DUNE FD completed: JINST 15 (2020) 08, T08008, T08009, T08010, FERMILAB-PUB-20-025-ND
 - CDR for DUNE ND completed: FERMILAB-PUB-21-067-E-LBNF-PPD-SCD-T
 - ProtoDUNE as a successful demonstration of technology: JINST 15 (2020) P12004
 - A significant amount of FD and ND prototyping effort
- Plenty of room for additional collaborators

Backups

T2K limitation

• T2K sensitivity vs. time

ProtoDUNE detector

TPC configuration	Anode-Cathode-Anode (2 active volumes)
TPC dimensions (active volumes)	$6.086 \text{ (h)} \times 3.597 \text{ (w)} \times 7.045 \text{ (l)} \text{ m}^3$
(instrumented volumes)	$5.984 \text{ (h)} \times 3.597 \text{ (w)} \times 6.944 \text{ (l)} \text{ m}^3$
Total active volume (nominal, at room T)	$2 \times 154 \text{ m}^3$
Total instrumented LAr mass (87.65 K)	419 t
Number of TPC wire planes	4 (G, U, V, X)
Number of wires (total)	15360 (instrumented)
G: Grid plane	2×2880 (non-instrumented)
U: 1st induction plane	2×2400 (instrumented, wrapped)
V: 2 nd induction plane	2×2400 (instrumented, wrapped)
Z: TPC-side collection plane	2×1440 (instrumented)
C: Cryostat-side collection plane	2×1440 (instrumented)
Wire orientation (w.r.t. vertical)	G: 0°, U: +35.7°, V: -35.7°, X: 0°
Wire pitch (normal to wire direction)	4.79 mm (G, X); 4.67 mm (U, V)
Wire type	Cu-Be Alloy #25, diam. 150 μm
Gap width between planes	4.75 mm
E-Field (nominal) in drift volume	500 V/cm
Cathode plane voltage	-180 kV
Anode plane bias voltages	G: -665 V, U: -370 V, V: 0 V, X: +820 V
Ground mesh	0 V
Max. drift length	3572 mm
(Cathode-to-G-plane distance at 87.65 K)	
Drift velocity (nominal field, 87.65 K)	1.59 mm/μs
Max. drift time (nominal field, 87.65 K)	2.25 ms

DUNE δ_{CP} sensitivity projection

Mass Ordering Sensitivity

Summary

- Exposure as a function of time depending on details of detector installation schedule, PIP-II beam power ramp-up and accelerator uptime that not fully determined yet
- To avoid dependence on details of the project schedules, DUNE exposure presented in terms of kt-MW-years
- As a reference:
 - Early: 1 calendar year ~ 24 kt-MW-years with 2
 FD modules at full nominal intensity of 1.2 MW
 - Long-term: 1 calendar year ~ 96 kt-MW-years with full FD and upgraded 2.4 MW intensity
 - 56% uptime assumed based on historical NuMI operations

PIP-II Nominal Power Ramp-up

*Power ramp up to 1.2 MW can potentially be reduced to 2.5 years

*Power ramp expected to begin before DUNE comes online, such that initial DUNE power is >0

