

RESULTS FROM THE MUON G-2 EXPERIMENT AT FERMILAB

SIMON CORRODI Argonne National Laboratory

on behalf of the Muon g-2 collaboration NuFact 2021 Sep 6 - 11, 2021

APRIL 7TH: FERMILAB MUON G-2 EXPERIMENT ANNOUNCED THE FIRST RESULT

APRIL 7TH: FERMILAB MUON G-2 EXPERIMENT ANNOUNCED THE FIRST RESULT

conference on Wednesday, Dr.

Polly pointed to a graph display ing white space where the Fermi

lab findings deviated from the the

THE MUON 9-2 ANOMALY

EXPLAINED

oretical prediction. *We can say with fairly high confidence, there

Continued on Page A19

Annalders in

two 2 0

Nechtes Wetter vor Norwegan

BEnte: Bargung der -Cernslift Hendrice

THE MAGNETIC MOMENT OF THE MUON

$$\overrightarrow{\mu} = \frac{e}{2m}\overrightarrow{s}$$

Magnetic moment connected to spin via dimensionless factor g: gyromagnetic ratio

$$a_{\mu} = \frac{g-2}{2}$$

the anomalous magnetic moment

THE MAGNETIC MOMENT OF THE MUON: FROM THEORY

Dirac g=2 (1928) for s=1/2 particles **Muon g-2 Theory Initiative**

a_µ(SM)=116591810(43) x 10⁻¹¹

Schwinger (1948)Vacuum polarizations1st order QEDHigher order QEDuncertainty: 0.1 x 10-11

HadronicElectroweakHVP: 6845(40) x 10⁻¹¹153.6(1.0) x 10⁻¹¹HLbL:92(18) x 10⁻¹¹

MEASURE $a_{\!\mu}$ in a storage ring

Argonne National Laboratory is a U.S. Department of Energy laboratory managed by UChicago Argonne, LLC.

MEASURE $a_{\!\mu}$ in a storage ring

STORAGE RING: HOW WE STORE THE MUONS

$$\frac{\omega_a}{\tilde{\omega_p'}} \approx \frac{f_{\text{clock}} \,\omega_a^m \left(1 + C_e + C_p + C_{ml} + C_{pa}\right)}{f_{\text{calib}} \left\langle \omega_p'(x, y, \phi) \times M(x, y, \phi) \right\rangle \left(1 + B_K + B_Q\right)}$$

MEASURE a_{μ} IN A STORAGE RING

$$a_{\mu} = \frac{\omega_a}{\tilde{\omega'_p}} \frac{\mu'_p}{\mu_e(H)} \frac{\mu_e(H)}{\mu_e} \frac{m_{\mu}}{m_e} \frac{g_e}{2}$$

unblinding factor precession beam dynamics corrections

$$\frac{\omega_a}{\tilde{\omega}'_p} \approx \frac{f_{\text{clock}} \, \omega_a^{\text{meas}} \left(1 + C_e + C_p + C_{ml} + C_{pa}\right)}{f_{\text{calib}} \, \left\langle \omega'_p(x, y, \phi) \times M(x, y, \phi) \right\rangle \left(1 + B_K + B_Q\right)}$$

absolute field calibration

magnetic field sampled by the muon distribution Magnetic transients corrections

THE MUONS

8 GeV protons in recycler

2 x 8 shots

p/π/μ beam, p kicked away, π decay

 $\pi^+
ightarrow \mu^+
u_{\mu}$ 95% polarized muons

$$\overrightarrow{\omega}_{a} = -\frac{q}{m} \left(a_{\mu} \overrightarrow{B} - \left(a_{\mu} - \frac{1}{\gamma^{2} - 1} \right) \frac{\overrightarrow{\beta} x \overrightarrow{E}}{c} \right)$$

fo $p = p_{\text{magic}} = \frac{mc}{\sqrt{a_{\mu}}} = 3.094 \,\text{GeV/c}$

Store muons for ~700us (~10 lifetimes)

Argonne 🧹

HOW TO STORE MUONS: MAGNETIC FIELD

Fully-assembled lamination (10 degrees wide)

HOW TO STORE MUONS: THE INFLECTOR

- Need to cancel field in beam channel
- prevents strong deflection of the beam

Helium Channe (for cooling)

HOW TO STORE MUONS: THE KICKER

HOW TO STORE MUONS: FOCUSING

- Radial focus:
 1.45T vertical B field
- Vertical focus:

electrostatic quadrupoles (43% of the ring)

Outer coil

- Inner upper coil

Inner lower coil

To ring center

uon bear

THE MEASUREMENT: CALORIMETERS (ω_a^{meas})

24 Calorimeters with 54 (9x6) Cherenkov PbF₂ crystals read out by SiPMs

- arrival time (~100ps) & energy of e⁺ (~5% at 2GeV)
- Laser system for gain response calibration throughout data taking (stability 10-3, rate difference 104) 17

THE MEASUREMENTS: CALORIMETERS (ω_a^{meas})

 Parity violating decay (Michel)
 Highest-energy e⁺ emitted preferentially along muon spin

$$\begin{array}{ccc} \nu_{e} & \stackrel{\rightarrow}{\longleftarrow} & \stackrel{\mu^{+}}{\bullet} & \stackrel{\rightarrow}{\longrightarrow} & e^{+} \\ \bar{\nu}_{\mu} & \stackrel{\leftarrow}{\leftarrow} & \stackrel{\rightarrow}{\bullet} & \stackrel{\rightarrow}{\bullet} & e^{+} \end{array}$$

MEASUREMENTS: ω_a^{meas}

$$\frac{\omega_a}{\tilde{\omega_p'}} \approx \frac{f_{\text{clock}} \, \boldsymbol{\omega_a^{\text{meas}}} \left(1 + C_e + C_p + C_{ml} + C_{pa}\right)}{f_{\text{calib}} \left\langle \omega_p'(x, y, \phi) \times M(x, y, \phi) \right\rangle \left(1 + B_K + B_Q\right)}$$

U.S. DEPARTMENT OF ENERGY Argonne National Laboratory is a U.S. Department of Energy laboratory managed by UChicago Argonne, LLC.

MEASUREMENTS: ω_a^{meas}

ENERGY Argonne National Laboratory is a U.S. Department of Energy laboratory managed by UChicago Argonne, LLC.

$$\frac{\omega_a}{\tilde{\omega'_p}} \approx \frac{f_{\text{clock}} \, \omega_a^{\text{meas}} \left(1 + C_e + C_p + C_{ml} + C_{pa}\right)}{f_{\text{calib}} \left\langle \omega'_p(x, y, \phi) \times M(x, y, \phi) \right\rangle \left(1 + B_K + B_Q\right)}$$

$$N(t) = N_0 e^{-t/\gamma \tau_{\mu}} [1 + A\cos(\omega_a t + \phi_0)]$$

Early-to-late effects $\phi \rightarrow \phi(t)$ -> corrections needed

21

Argonne

TRACKERS: BEAM DYNAMICS

2 straw-tracker stations

(each 8 modules, 4 layers of 32 straws, 50:50 Ar:Ethane, res ~100um)

Muon distribution + field maps: $\tilde{\omega_p'}$ Handle on beam dynamics

TRACKERS: BEAM DYNAMICS

$$\frac{\omega_a}{\tilde{\omega_p'}} \approx \frac{f_{\text{clock}} \, \omega_a^{\text{meas}} \left(1 + C_e + C_p + C_{ml} + C_{pa} \right)}{f_{\text{calib}} \left\langle \omega_p'(x, y, \phi) \times M(x, y, \phi) \right\rangle \left(1 + B_K + B_Q \right)}$$

NUCLEAR MAGNETIC RESONANCE (NMR)

Flip spins of a sample by delivering a π/2-pulse
measure Free Induced Decay (FID)

H₂0 calibration probe (f_{calib}) BENERGY U.S. Department of Energy laborator managed by UChicago Argonne, LLC

Free Induced Decay (FID)

time [s]

THE FIELD MEASUREMENT

Trolley

- inside the storage region, ~3 days
- 17 probes, moves around the ring

 $\frac{\omega_a}{\tilde{\omega_p'}} \approx \frac{f_{\text{clock}} \, \omega_a^{\text{meas}} \left(1 + C_e + C_p + C_{ml} + C_{pa}\right)}{f_{\text{calib}} \left\langle \omega_p'(x, y, \phi) \times M(x, y, \phi) \right\rangle \left(1 + B_K + B_Q\right)}$ **378 Fixed Probes**

- Outside of the storage region
- 72 position, ~5deg apart

U.S. DEPARTMENT OF ENERGY Argonne National Laboratory is a U.S. Department of Energy laborator managed by UChicago Argonne, LLC

THE FIELD MEASUREMENT

Trolley (every ~3 days) Field inside the muon storage volume

$$\frac{\omega_a}{\tilde{\omega_p'}} \approx \frac{f_{\text{clock}} \,\omega_a^{\text{meas}} \left(1 + C_e + C_p + C_{ml} + C_{pa}\right)}{f_{\text{calib}} \left\langle \omega_p'(x, y, \phi) \times M(x, y, \phi) \right\rangle \left(1 + B_K + B_Q\right)}$$

378 Fixed Probes (from the outside) Track the field between field maps

THE RUN-1 RESULT

 $\frac{f_{\text{clock}}\,\omega_a^{\text{meas}}\left(1+C_e+C_p+C_{ml}+C_{pa}\right)}{f_{\text{calib}}\,\left\langle\omega_p'(x,y,\phi)\times M(x,y,\phi)\right\rangle\left(1+B_K+B_Q\right)}$ $\frac{\omega_a}{\tilde{\omega_p'}}\approx$

THE RUN-1 UNBLINDING

BEYOND RUN-1: WHATS NEXT

Run-1 publication: only ~6% of the full expected dataset

BEYOND RUN-1: VERY EXITING TIMES

Much more data to come!

Also the theory side is very active! New lattice results (and more expected) that will be scrutinized in the coming years.

Related: MUonE Proposed experiment to measure a_{μ}^{HLO}

THE COLLABORATION

Run-1 unblinding ceremony

USA

- - Cornell
 - Illinois
 - James Madison
 - Kentucky

Boston

- Massachusetts
- Michigan
- Michigan State
- Mississippi

- - North Central
 - Northern Illinois
 - Regis
 - Virginia
 - Washington
- USA National Labs
 - Argonne
 - Brookhaven
 - Fermilab

- China
 - Shanghai Jiao Tong
 - Germany
 - Dresden _
 - Mainz _

Russia

Budker/Novosibirsk

35

JINR Dubna

- Italy
 - Frascati
 - Molise
 - Naples
 - Pisa
 - Roma Tor Vergata
 - Trieste
 - Udine

- CAPP/IBS
- KAIST _

N United Kingdom

- Lancaster/Cockcroft
- Liverpool _
- Manchester
 - University College London

U.S. DEPARTMENT OF ENERGY Argonne National Laboratory is a U.S. Department of Energy laboratory managed by UChicago Argonne, LLC.

