# Lepton Flavour Violation: Muon Experiments

Gavin Hesketh, 10<sup>th</sup> Sept 2021 NuFACT 2021, Cagliari / online

## MEG-II, Mu3e, DeeMe, COMET, Mu2e and beyond

Thanks to: Rob Bernstein, Cristina Carloganu, Craig Dukes, Bertrand Echenard, Andreas Knecht, Alex Kozlinskiy, Yoshitaka Kuno, Manuel Meucci, Jim Miller, Hajime Nishiguchi, Kyohei Noguchi, Angel Papa, Gianantonio Pezzullo, Stefan Ritt, Andre Schoening, Natsuki Teshima



Charged lepton flavour violation is a complementary probe for BSM

#### $\rightarrow$ a huge leap in sensitivity coming

#### History

#### <sup>±</sup>UC

#### Nuclear Capture of Mesons and the Meson Decay

B. PONTECORVO National Research Council, Chalk River Laboratory, Chalk River, Ontario, Canada June 21, 1947

...Returning to the actual decay of the meson, an experiment suggests itself which might answer the following question: Is the electron emitted by the meson with a mean life of about 2.2 microseconds accompanied by a photon of about 50 Mev? This experiment is being attempted at the present time, since it is felt that the available analysis<sup>10</sup> of the soft component in equilibrium with its primary meson component is probably insufficient to decide definitely whether the meson decays into either an electron plus neutral particle(s) or electron plus photon.

Yoshi Uchida

ELECTROMAGNETIC TRANSITIONS BETWEEN  $\mu$  MESON and ELECTRON

S. Weinberg<sup>†</sup> Columbia University, New York, New York G. Feinberg<sup>‡</sup> Brookhaven National Laboratory, Upton, New York (Received June 15, 1959)

The existence of the ordinary  $\mu$  decay.  $\mu \rightarrow e + \nu + \overline{\nu}$ , seems to prove that the muon and electron do not differ in any quantum numbers.<sup>1</sup> It follows that weak electromagnetic transitions between muons and electrons could occur, if there is a mechanism to produce them. For example, one such mechanism would exist if the  $\mu$  decay was not caused by a direct  $\overline{\mu}e\overline{\nu}\nu$  Fermi interaction but instead involved a virtual charged boson. This particular possibility seems ruled out, since the predicted<sup>2</sup> rate for  $\mu \rightarrow e + \gamma$  would be considerably greater than the upper limit set by recent experiments.<sup>3,4</sup> The purpose of this note is to discuss phenomenologically (without attachment to any specific mechanism) other kinds of electromagnetic transitions between muon and electron that may be possible even if  $\mu \rightarrow e + \gamma$  is somehow suppressed.

#### 1947: Is the muon (meson) an excited electron?



1959: Do neutrinos have flavour?





1962: discovery of the muon neutrino at BNL (Lederman, Schwartz, Steinberger)



$$Br(\mu \to e\gamma) = \frac{3\alpha}{32\pi} \left| \sum_{k} U_{\mu k}^{*} U_{ek} \frac{m_{\nu k}^{2}}{M_{W}^{2}} \right|^{2} < \mathcal{O}(10^{-50})$$

Petcov, 1977

#### **CLFV common in BSM models:**

**CLFV** 

R-parity violating SUSY, SUSY-seesaw, Little Higgs, Higgs doublets, Leptoquarks, Z'...

**LOU** 

#### **Connect to leptogenesis & neutrino mass:**

- e.g. with RH majorana neutrino see-saw



#### The Three Channels





*Current limit:* BR < 4.2x10<sup>-13</sup> - MEG @ PSI

#### Future limit:

→ BR < 10<sup>-14</sup> - MEG-II @ PSI



µ→eee

*Current limit:* BR < 1x10<sup>-12</sup> - SINDRUM @ PSI

Future limit:

→ BR < 10<sup>-16</sup> - Mu3e Phase 2 @ PSI



Conversion:

*Current limit:* BR < 7x10<sup>-13</sup> - SINDRUM-2 @ PSI

#### Future limit:

- $\rightarrow$  BR < 10<sup>-17</sup>
- Mu2e @ FNAL
- COMET @ J-PARC
- DeeMe @ J-PARC







#### Current limits



#### **Experimental Challenges**

<sup>±</sup>UCL





#### Muon decay:

- coincidence search, combinatorics important
- $\rightarrow$  D.C. muon beam



## Muon conversion: prompt backgrounds, delayed signal → pulsed muon beam, high extinction factor

- Experiments are "end point" searches  $\rightarrow$  resolution critical
- Require tracking of low energy (~100 MeV or less) electrons
- Deal with high rates (10<sup>7</sup> 10<sup>11</sup> muons per second)

#### MEG-II @ PSI

<sup>±</sup>UCL

#### MEG ran 2009 – 2013

- $\pi E5$  beam,  $3x10^7$  muons/s @ 28 MeV
- 7.5 x  $10^{14}$  muon stops

## BR( $\mu \rightarrow e Y$ ) < 4.3x10<sup>-13</sup> (90% C.L.)

Eur. Phys. J. C (2016) 76:434

### MEG-II

- optimised detector
- higher beam intensity (7x10<sup>7</sup> muons/s)









#### MEG-II @ PSI

**≜UCL** 

| Detector performance                                       |         |           |
|------------------------------------------------------------|---------|-----------|
| PDF parameters                                             | MEG     | MEG II    |
| $E_{e^+}$ (keV)                                            | 380     | 130       |
| $\theta_{e^+}$ (mrad)                                      | 9.4     | 5.3       |
| $\phi_{e^+}$ (mrad)                                        | 8.7     | 3.7       |
| $z_{e^+}/y_{e^+}$ (mm) core                                | 2.4/1.2 | 1.6/0.7   |
| $E_{\gamma}(\%) \ (w > 2 \ \text{cm})/(w < 2 \ \text{cm})$ | 2.4/1.7 | 1.1/1.0   |
| $u_{\gamma}, v_{\gamma}, w_{\gamma} \text{ (mm)}$          | 5/5/6   | 2.6/2.2/5 |
| $t_{e^+\gamma}$ (ps)                                       | 122     | 84        |
| Efficiency (%)                                             |         |           |
| Trigger                                                    | ≈ 99    | ≈ 99      |
| Photon                                                     | 63      | 69        |
| $e^+$ (tracking × matching)                                | 30      | 70        |

Log scale

12x12mm<sup>2</sup> MPPC -----



Linear scale





**9 LAYERS WITH 192 SENSE WIRES EACH** 

#### MEG-II @ PSI

#### **Pre-engineering run Oct-Dec 2020**

- with all detectors, limited readout
- stability & performance studied
- MPPC & CDC issues resolved

#### **Engineering run Aug-Dec 2021**

- complete detector and TDAQ
- final studies of detector stability and performance
- first physics data at end of run
- tests for X(17) measurement using proton beam from LXe calibration

#### Expect sensitivity of 6x10<sup>-14</sup> based on 3 years running (x10 improvement in BR limit)





#### Mu3e @ PSI

#### Mu3e @ PSI:

- search for  $\mu \rightarrow eee$
- share  $\pi E5$  beamline with MEG-II (10<sup>8</sup> muons / s)
- Phase-I target BR < 2x10<sup>-15</sup> (~10<sup>3</sup> improvement)

#### **Require timing, momentum & vertex resolution** on low-energy (E<m<sub>u</sub>/2) electrons









#### Mu3e @ PSI





Four layer HV-MAPS tracker: (talk by Andre Schoening)

- MuPix11: 80x80um, 256x250 pix, thinned to 50um ( $0.01X_0$  per layer)

 $\rightarrow$  vertex resolution 200um, momentum resolution 0.5 MeV.

#### **Timing detectors:**

G. Hesketh

- Scintillating fibres (<1ns) and tiles (<100ps)

#### **Online tracking on GPU farm**

TDR: NIM A: Vol. 1014 (2021) 165679

(2 short tracks) (2 short tracks) long 6-hit track (short + 2 hits)

See talk by Alex Kozlinskiy on Tuesday

#### Mu3e @ PSI

 $g_{10}(\Lambda_{ee}^{-1})$ 

#### **Dielectron resonance search:**

dark photons, ALPs, LLPs,...

#### Integration run May/June 2021 (poster by Marius Köppel)

- magnet & beam-line commissioned
- two layers of pixels + scintillating fibres, data analysis ongoing

#### Engineering run 2023, physics 2024

- target BR< 2x10<sup>-15</sup> (x1000 on SINDRUM limit)

#### Mu3e Phase-II:

G. Hesketh

- HiMB @ PSI: 2028, >2x10<sup>9</sup>  $\mu$  / s (talk by Andreas Knecht)
- detector upgrade: increase acceptance & deal with occupancy
- BR( $\mu$ →eee) < 10<sup>-16</sup> (x10 improvement, x10<sup>4</sup> on SINDRUM)





#### **Muon Conversion**

**UC** 

#### **Conversion experiments:**

- signal: mono-energetic electron

### **Backgrounds:**

- pions, d.i.f., radiative nuclear capture
- cosmics (veto system)
- decay in orbit is primary background





<sup>±</sup>UCL

#### Talk by Cristina Carloganu



COMET @ J-PARC

CyDet (for µ-e conv. search)

#### StrECAL (for beam measurement)



First station complete
 Five stations in total.



\* ECAL prototype successfully completed.
\* Detector assembly will start soon.

Talk by Hajime Nishiguchi

Beamline completed in 2023, expect physics in 2024 BR< 7x10<sup>-15</sup> (0.4 years running) - x100 on SINDRUM-II

#### COMET Phase-II @ J-PARC

**<sup>±</sup>UCL** 

Higher beam power, x100 stops / s

Additional transport solenoid: reduced beam backgrounds



#### **Upgrade StrECAL:**

- straws  $20 \rightarrow 12$  um thick

Talk by Cristina Carloganu

- ~double #LYSO crystals

#### Phase-II to follow Phase-I

BR <  $2.6 \times 10^{-17}$  (1 year running) - x10000 on SINDRUM-II

No photons and neutrons from the target getting to the detector! No low momentum charged particles either ...

#### Mu2e @ FNAL

#### <sup>±</sup>UCL

Talk by Gianantonio Pezzullo



#### Cylindrical straw tracker:

- 20k straw tubes in 36 planes (5 complete)

#### **Calorimeter:**

- 2 disks, 630 undoped CsI crystals

### STM:

- downstream, gamma-rays from muon capture



#### **Status:**

Beam-line complete (shared with Muon g-2) Beam on target late 2024 (800 MeV, 8kW)

- talk by Diktys Stratakis

Data in 2025

→ limit BR <  $5x10^{-16}$  (~1000x SINDRUM-II) Shutdown 2026 (PIP-II installation), resume 2029 → limit BR <  $8x10^{-17}$ 

#### Search for $\mu^{-} \rightarrow e^{+}$ :

 $\rightarrow$  Run-I sensitivity 4x10<sup>-16</sup>









#### DeeMe @ J-PARC





#### DeeMe @ J-PARC:

- simpler experiment, different systematics
- integration run in 2019, DIO measurement
- H-line ready 2022, data to follow

**Limits** (based on 1 year running):

- C target, BR <  $1 \times 10^{-13}$
- SiC target, BR <  $2x10^{-14}$

See talk by Natsuki Teshima, Weds

#### Mu2e-II @ FNAL

## Conversion sensitivity BR<10<sup>-18</sup> (x10 over Mu2e)

- full use of PIP-II beam:
  - ~3X increase in muon beam intensity
  - ~3X increase in live time

## **Requires new production target**

- opportunity to study different Z stopping targets

## New solenoids and new detectors





Talk by Craig Dukes

**≜** | **C** |

#### Further ahead

**UC**L

#### **PRISM (Phase Rotated Intense Source of Muons)**

- FFA ring, intense pulsed beam
- synergy with muon collider/nu factory R&D
- Proof-of-concept MUSIC (Osaka), arXiv:1310.0804
- PRISM+PRIME detector @ J-PARC
- → x100 on conversion limit SNOWMASS21-RF5\_RF0-AF5\_AF0\_J\_Pasternak-096.pdf

## ENIGMA @ FNAL:

- surface muons with PIP-II:  $10^{12}\,\mu$  / s
  - x100 on the MEG-II limit
- PRISM-based pulsed muon beam

- conversion down to 10<sup>-20</sup>, different Z targets SNOWMASS21-RF5\_RF0-AF5\_AF0\_Robert\_Bernstein-027.pdf



See talk by Bertrand Echenard, Weds

#### **Complementary search for BSM physics**

#### Three "golden channels":

- μ→eγ: MEG-II
- µ→eee: Mu3e
- conversion: DeeMe, COMET, Mu2e

Huge increase in sensitivity coming: BR < ~10<sup>-17</sup>

Future beam facilities offer further significant gains

