

Funded by the Horizon 2020 Framework Programme of the European Union

Physics Potential of the ESSnuSB NuFact 2021 09/09/2021 **Cagliari**, Italy

Salvador Rosauro-Alcaraz

What we know (at 1σ)

I. Esteban et al. 2007.14792 www.nu-fit.org

Solar sector
$$\begin{cases} \sin^2 \theta_{12} = 0.304^{+0.012}_{-0.012} \\ \Delta m_{21}^2 = 7.42^{+0.21}_{-0.20} \cdot 10 \\ \sin^2 \theta_{23} = 0.573^{+0.016}_{-0.020} \\ |\Delta m_{31}^2| = 2.517^{+0.020}_{-0.020} \end{cases}$$

$$\sin^2 \theta_{13} = 0.02219^{+0.00062}_{-0.00063}$$

2 2 $0^{-5} eV^2$

 $\frac{26}{28} \cdot 10^{-3} eV^2$

What we know (at 1σ)

I. Esteban et al. 2007.14792 www.nu-fit.org

Solar sector
$$\begin{cases} \sin^2 \theta_{12} = 0.304^{+0.012}_{-0.012} \\ \Delta m_{21}^2 = 7.42^{+0.21}_{-0.20} \cdot 10^{-5} eV^2 \\ \sin^2 \theta_{23} = 0.573^{+0.016}_{-0.020} \\ |\Delta m_{31}^2| = 2.517^{+0.026}_{-0.028} \cdot 10^{-3} eV^2 \end{cases}$$

 $\sin^2 \theta_{13} = 0.02219$ -0.00063

What we do not know (yet)

Is there leptonic

CP violation, i.e., $\delta \neq 0, \pi$?

Mass ordering: $sign(\Delta m_{31}^2)$

Octant of θ_{23}

From I. Esteban et al. 2007.14792 www.nu-fit.org

From I. Esteban et al. 2007.14792 www.nu-fit.org

What we do not know (yet)

Is there leptonic

CP violation, i.e., $\delta \neq 0, \pi$?

From I. Esteban et al. 2007.14792 www.nu-fit.org

CP violation in ν oscillations

P. Coloma & E. Fernandez-Martinez, 1110.4583

ESSnuSB

E. Baussan et al. 1309.7022

- Modify ESS linac to produce neutrinos
- 5 MW at 2.5 GeV proton beam
- Memphis-like WC detector:
 - 538 kt fiducial volume MEMPHYS Collaboration, 1206.6665
 - Best locations at 540 km and 360 km

ESSnuSB

- E. Baussan *et al.* 1309.7022
- Modify ESS linac to produce neutrinos
- 5 MW at 2.5 GeV proton beam
- Memphis-like WC detector:
 - 538 kt fiducial volume MEMPHYS Collaboration, 1206.6665
 - Best locations at 540 km and 360 km

ESSnuSB

- E. Baussan *et al.* 1309.7022
- Modify ESS linac to produce neutrinos
- 5 MW at 2.5 GeV proton beam
- Memphis-like WC detector:
 - 538 kt fiducial volume MEMPHYS Collaboration, 1206.6665
 - Best locations at 540 km and 360 km

E. Baussan *et al.* 1309.7022

Matter effects are important for $E_{\nu} \sim \mathcal{O}(\text{GeV})$ Not very sensitive to $sign(\Delta m_{31}^2)$ Poor determination of the ordering and the octant of θ_{23}

Atmospheric neutrinos at ESSnuSB

500 kt Water-Cerenkov detector

$$P_{\mu \to e} = s_{23}^2 \sin^2 2\theta_{13} \left(\frac{\Delta_{31}}{\tilde{B}_{\mp}}\right)^2 \sin^2 \frac{\tilde{B}}{\tilde{B}_{\mp}}$$

https://neutrinos.fnal.gov/sources/atmospheric-neutrinos/

Atmospheric neutrinos at ESSnuSB

500 kt Water-Cerenkov detector

 $P_{\mu \to e} = s_{23}^2 \sin^2 2\theta_{13} \left(\frac{\Delta_{31}}{\tilde{B}_{\mp}}\right)^2 \sin^2 \frac{\tilde{B}_{\pm}L}{2}$ Sensitivity to octant

https://neutrinos.fnal.gov/sources/atmospheric-neutrinos/

Atmospheric neutrinos at ESSnuSB

https://neutrinos.fnal.gov/sources/atmospheric-neutrinos/

Simulation details

P. Huber et al. hep-ph/0701187

Implemented in GLoBES

- Explicitly simulate the ND
- 2.5 GeV proton beam
- 1 Mt WC far detector
- QE cross sections
- $t_{\nu} = t_{\bar{\nu}} = 5$ years

Simulation details

P. Huber *et al.* hep-ph/0701187

Implemented in GLoBES

- Explicitly simulate the ND
- 2.5 GeV proton beam
- 1 Mt WC far detector
- QE cross sections
- $t_{\nu} = t_{\bar{\nu}} = 5$ years

Systematic uncertainties

_			
	Systematics	Opt.	Cons
ſ	Fiducial volume ND	0.2%	0.5%
	Fiducial volume FD	1%	2.5%
	Flux error ν	5%	7.5%
	Flux error $\bar{\nu}$	10%	15%
	Neutral current background	5%	7.5%
	Cross section \times eff. QE	10%	15%
	Ratio ν_e/ν_μ QE	3.5%	11%

P. Coloma *et al.* 1209.5973

Simulation details

Atmospheric sample J. Campagne et al. hep-ph/0603172 (kindly provided by Michele Maltoni)

- Honda flux at Gran Sasso
- Expect larger fluxes
- at Garpenberg or Zinkgruvan
- NC contamination: Same ratio between NC and unoscillated CC events as SK

M. Honda *et al. hep-ph/0404457*

SK Collaboration, Y. Ashie et al. hep-ex/0501064

Systematic uncertainties

	Systematics	Opt.	Cons
ſ	Fiducial volume ND	0.2%	0.5%
	Fiducial volume FD	1%	2.5%
	Flux error ν	5%	7.5%
	Flux error $\bar{\nu}$	10%	15%
	Neutral current background	5%	7.5%
	Cross section \times eff. QE	10%	15%
	Ratio ν_e/ν_μ QE	3.5%	11%

P. Coloma *et al.* 1209.5973

CP violation sensitivity

Complementarity between beam and atm

Octant and mass ordering

M. Blennow et al. 1912.04309

Octant and mass ordering

Precision on δ

Precision on δ

Effect of systematic uncertainties

What about shape systematics?

Prog. Theor. Exp. Phys. 2020

What about shape systematics?

Energy-dependant uncertainties

What about shape systematics?

Energy-dependant uncertainties

Introduce uncorrelated nuisance parameters in each energy bin in GLoBES

ESSnuSB Collaboration, arXiv:2107.07585 (See talk by Budimir Klicek)

- 5 MW at 2.5 GeV proton beam
- Memphis-like WC detector:
 - 538 kt fiducial volume
 - ν flux and migration matrices calculated for ESSnuSB configuration \rightarrow Factor of 2 improvement on signal selection efficiency
- Normalization systematics: 5% signal, 10% background
- Better energy resolution
- Only FD simulated

ESSnuSB Collaboration, arXiv:2107.07585

- 5 MW at 2.5 GeV proton beam
- Memphis-like WC detector:
 - 538 kt fiducial volume
 - ν flux and migration matrices calculated for ESSnuSB configuration \rightarrow Factor of 2 improvement on signal selection efficiency
- Normalization systematics: 5% signal, 10% background
- **Better energy resolution**
- Only FD simulated

ESSnuSB Collaboration, arXiv:2107.07585

- 5 MW at 2.5 GeV proton beam
- Memphis-like WC detector:
 - 538 kt fiducial volume
 - *ν* flux and migration matrices calculated for ESSnuSB
 configuration → Factor of 2
 improvement on signal selection efficiency
- Normalization systematics: 5% signal, 10% background
- Better energy resolution
- Only FD simulated

ESSnuSB Collaboration, arXiv:2107.07585

- 5 MW at 2.5 GeV proton beam
- Memphis-like WC detector:
 - 538 kt fiducial volume
 - *ν* flux and migration matrices calculated for ESSnuSB
 configuration → Factor of 2
 improvement on signal selection efficiency
- Normalization systematics: 5% signal, 10% background
- Better energy resolution
- Only FD simulated

Beam sample only

Effect of shape systematics

L = 360 km

Beam + Atmospherics

L = 540 km

Effect of shape systematics

L = 360 km

Beam + Atmospherics

L = 540 km

Conclusions

- **ESSnuSB**
- After 10 years, the CP fraction for a 5σ discovery is >70%
- Optimise RT to maximise the precision on δ which can range from $\Delta\delta$ ~4.5° for CP conservation to $\Delta\delta$ <12° ($\Delta\delta$ <6°) at 540 (360) km for maximal CP violation
- Study of spectral uncertainties is fundamental. If they are not under control, then the longer baseline closer to the second maximum is more resilient against them.

Combining beam and atm data particularly enhance the physics reach of

Conclusions

- **ESSnuSB**
- After 10 years, the CP fraction for a 5σ discovery is >70%
- Optimise RT to maximise the precision on δ which can range from $\Delta\delta$ ~4.5° for CP conservation to $\Delta\delta$ <12° ($\Delta\delta$ <6°) at 540 (360) km for maximal CP violation
- Study of spectral uncertainties is fundamental. If they are not under control, then the longer baseline closer to the second maximum is more resilient against them.

Combining beam and atm data particularly enhance the physics reach of

Back up slides

Precision on δ $P_{\mu \to e}^{\pm} = s_{23}^2 \sin^2 2\theta_{13} \left(\frac{\Delta_{31}}{\tilde{B}_{\mp}}\right)^2 \sin^2 \frac{\tilde{B}_{\mp}L}{2}$ $+c_{23}^2 \sin^2 2\theta_{12} \left(\frac{\Delta_{21}}{A}\right)^2 \sin^2 \frac{AL}{2}$

Precision on δ

$$\frac{\partial \Delta P_{\mu \to e}}{\partial \delta} \propto -\sin \delta \cos \frac{\Delta_{31} L}{2} \pm \cos \delta \sin \frac{\Delta_{31} L}{2}$$

At an oscillation maximur

$$\frac{\partial \Delta P_{\mu \to e}}{\partial \delta} \propto$$

$$\to \Delta_{31} L/2 = (2n - 1)\pi/2$$

$$\pm \cos \delta \sin \frac{\Delta_{31}L}{2}$$

Maximum CP violation $\rightarrow \cos \delta = 0$

Effect of systematic uncertainties

Non-standard oscillation searches

- LSND experiment
- MiniBooNE experiment
- Gallium anomaly
- Different reactor anomalies

 ν_e appearance at SBL

MiniBooNE Collaboration 2006.16883

I. Esteban et al. 2007.14792 www.nu-fit.org

Simulation details

- ND+FD analysis
- Conservative systematics

M. Gosh et al. 1912.10010 10^{2} 95% C.L. 10^{1} 10^{0} 10^{-1} 10^{-2} Overall systematic 5 PP, 3% S + 1% B 5 PP, 5% S + 3% B 10^{-3} 5 PP, 10% S + 10% B 8 PP, 10% S + 10% B ND counting exp. 10^{-} 10^{-3} 10^{-2} 10^{-1} 10^{-4} $\sin^2 2\theta_{\mu e}$

I. Esteban et al. 2007.14792 www.nu-fit.org

Simulation details

- ND+FD analysis
- Conservative systematics

10^{2} 95% C.L. 10^{1} **★ LSND** bf 10^{0} 10^{-1} 10^{-2} Overall systematic 5 PP, 3% S + 1% B 5 PP, 5% S + 3% B 10^{-3} 5 PP, 10% S + 10% B \triangleleft 8 PP, 10% S + 10% B ND counting exp. 10^{-} 10^{-3} 10^{-2} 10^{-1} 10^{-4} $\sin^2 2\theta_{\mu e}$

Рие

I. Esteban et al. 2007.14792 www.nu-fit.org

Simulation details

- ND+FD analysis
- Conservative systematics

Determination of the sterile parameters

FD+ND, 5+5, 95% C.L

 $sin^2 \theta_{24}$ (test)

Determination of the sterile parameters

sin²θ₂₄ (test)

Systematics

- 8% signal
- 10% bkg

$\Delta m_{41}^2 = 1.7 \text{ eV}^2$, 95% C.L

Impact of a sterile on δ

$$\sin^2 \theta_{14} = \sin^2 \theta_{24} = 0.025$$
$$\Delta m_{41}^2 = 1 eV^2$$
$$\theta_{34} = \delta_{34} = 0^\circ$$

Impact of a sterile on δ

Sensitivity to CP violation

CP violation discovery still possible for any δ_{24}

Can we test these models? Is it possible to differentiate among them?

Model	Case [Ref.]	Group	$\sin^2 heta_{12}$	$\sin^2 heta_{23}$	$\delta_{ m CP}$
1.1	VII-b [18]	$A_5 \rtimes \mathrm{CP}$	0.331	0.523	180°
1.2	III [18]	$A_5 \rtimes \mathrm{CP}$	0.283	0.593	180°
1.3	IV [17]	$S_4 times \mathrm{CP}$	0.318	1/2	$\pm90^{\circ}$
1.4	II [17]	$S_4 times \mathrm{CP}$	0.341	0.606	180°
1.5	IV [18]	$A_5 \rtimes \mathrm{CP}$	0.283	1/2	$\pm 90^{\circ}$
2.1	A1 [21]	A_5		0.554	$f_1(heta_{12}$
2.2	B2 [21]	S_4	0.318		$f_2(heta_{23}$
2.3	B2 [21]	A_5	0.330		$f_3(heta_{23}$
2.4	B1 [21]	A_5	0.283		$f_4(heta_{23}$
2.5	B1 [21]	$A_4/S_4/A_5$	0.341		$f_5(heta_{23}$

PMNS mixing matrix structure — Discrete flavour symmetry

M. Blennow et al. 2005.12277

Models in agreement with oscillation data at 3σ

Can we test these models? Is it possible to differentiate among them?

Model	Case [Ref.]	Group	$\sin^2 heta_{12}$	$\sin^2 heta_{23}$	$\delta_{ m CP}$
1.1	VII-b [18]	$A_5 \rtimes \mathrm{CP}$	0.331	0.523	180°
1.2	III [18]	$A_5 \rtimes \mathrm{CP}$	0.283	0.593	180°
1.3	IV [17]	$S_4 \rtimes \mathrm{CP}$	0.318	1/2	$\pm90^{\circ}$
1.4	II [17]	$S_4 times \mathrm{CP}$	0.341	0.606	180°
1.5	IV [18]	$A_5 \rtimes \mathrm{CP}$	0.283	1/2	$\pm 90^{\circ}$
2.1	A1 [21]	A_5		0.554	$f_1(heta_{12}$
2.2	B2 [21]	S_4	0.318		$f_2(heta_{23}$
2.3	B2 [21]	A_5	0.330		$f_3(heta_{23}$
2.4	B1 [21]	A_5	0.283		$f_4(heta_{23}$
2.5	B1 [21]	$A_4/S_4/A_5$	0.341		$f_5(heta_{23}$

PMNS mixing matrix structure — Discrete flavour symmetry

Can we test these models? Is it possible to differentiate among them?

Model	Case [Ref.]	Group	$\sin^2 heta_{12}$	$\sin^2 heta_{23}$	$\delta_{ m CP}$
1.1	VII-b [18]	$A_5 \rtimes \mathrm{CP}$	0.331	0.523	180°
1.2	III [18]	$A_5 \rtimes \mathrm{CP}$	0.283	0.593	180°
1.3	IV [17]	$S_4 \rtimes \mathrm{CP}$	0.318	1/2	$\pm90^{\circ}$
1.4	II [17]	$S_4 times \mathrm{CP}$	0.341	0.606	180°
1.5	IV [18]	$A_5 \rtimes \mathrm{CP}$	0.283	1/2	$\pm 90^{\circ}$
2.1	A1 [21]	A_5		0.554	$f_1(heta_{12}$
2.2	B2 [21]	S_4	0.318		$f_2(heta_{23}$
2.3	B2 [21]	A_5	0.330		$f_3(heta_{23}$
2.4	B1 [21]	A_5	0.283		$f_4(heta_{23}$
2.5	B1 [21]	$A_4/S_4/A_5$	0.341		$f_5(heta_{23}$

PMNS mixing matrix structure — Discrete flavour symmetry

Can we differentiate among models?

Model	Case [Ref.]	Group	$\sin^2 heta_{12}$	$\sin^2 heta_{23}$	$\delta_{ m CP}$	$\chi^2_{ m min}$
1.1	VII-b [18]	$A_5 \rtimes \mathrm{CP}$	0.331	0.523	180°	5.37
1.2	III [18]	$A_5 \rtimes \mathrm{CP}$	0.283	0.593	180°	5.97
1.3	IV [17]	$S_4 \rtimes \mathrm{CP}$	0.318	1/2	$\pm90^{\circ}$	7.28
1.4	II [17]	$S_4 \rtimes \mathrm{CP}$	0.341	0.606	180°	8.91
1.5	IV [18]	$A_5 \rtimes \mathrm{CP}$	0.283	1/2	$\pm 90^{\circ}$	11.3
2.1	A1 [21]	A_5		0.554	$f_1(heta_{12})$	0.151
2.2	B2 [21]	S_4	0.318		$f_2(heta_{23})$	0.386
2.3	B2 [21]	A_5	0.330		$f_3(heta_{23})$	2.49
2.4	B1 [21]	A_5	0.283		$f_4(heta_{23})$	4.40
2.5	B1 [21]	$A_4/S_4/A_5$	0.341		$f_5(heta_{23})$	5.67

Can we differentiate among models?

Model	Case [Ref.]	Group	$\sin^2 heta_{12}$	$\sin^2 heta_{23}$	$\delta_{ m CP}$	$\chi^2_{ m min}$
1.1	VII-b [18]	$A_5 \rtimes \mathrm{CP}$	0.331	0.523	180°	5.37
1.2	III [18]	$A_5 \rtimes \mathrm{CP}$	0.283	0.593	180°	5.97
1.3	IV [17]	$S_4 \rtimes \mathrm{CP}$	0.318	1/2	$\pm90^{\circ}$	7.28
1.4	II [17]	$S_4 \rtimes \mathrm{CP}$	0.341	0.606	180°	8.91
1.5	IV [18]	$A_5 \rtimes \mathrm{CP}$	0.283	1/2	$\pm 90^{\circ}$	11.3
2.1	A1 [21]	A_5		0.554	$f_1(heta_{12})$	0.151
2.2	B2 [21]	S_4	0.318		$f_2(heta_{23})$	0.386
2.3	B2 [21]	A_5	0.330		$f_3(heta_{23})$	2.49
2.4	B1 [21]	A_5	0.283		$f_4(heta_{23})$	4.40
2.5	B1 [21]	$A_4/S_4/A_5$	0.341		$f_5(heta_{23})$	5.67

Future experimental sensitivities

Model	Case [Ref.]	Group	$\sin^2 heta_{12}$	$\sin^2 heta_{23}$	$\delta_{ m CP}$	$\chi^2_{ m min}$
1.1	VII-b [18]	$A_5 \rtimes \mathrm{CP}$	0.331	0.523	180°	5.37
1.2	III [18]	$A_5 \rtimes \mathrm{CP}$	0.283	0.593	180°	5.97
1.3	IV [17]	$S_4 \rtimes \mathrm{CP}$	0.318	1/2	$\pm 90^{\circ}$	7.28
1.4	II [17]	$S_4 \rtimes \mathrm{CP}$	0.341	0.606	180°	8.91
1.5	IV [18]	$A_5 \rtimes \mathrm{CP}$	0.283	1/2	$\pm 90^{\circ}$	11.3
2.1	A1 [21]	A_5		0.554	$f_1(heta_{12})$	0.151
2.2	B2 [21]	S_4	0.318		$f_2(heta_{23})$	0.386
2.3	B2 [21]	A_5	0.330		$f_3(heta_{23})$	$\left 2.49 \right $
2.4	B1 [21]	A_5	0.283		$f_4(heta_{23})$	4.40
2.5	B1 [21]	$A_4/S_4/A_5$	0.341		$f_5(heta_{23})$	5.67

ESSnuSB T2HK DUNE ESSnuSB+atm Combination

M. Blennow et al. 2005.12277

Future experimental sensitivities

Model	Case [Ref.]	Group	$\sin^2 heta_{12}$	$\sin^2 heta_{23}$	$\delta_{ m CP}$	$\chi^2_{ m min}$
1.1	VII-b [18]	$A_5 \rtimes \mathrm{CP}$	0.331	0.523	180°	5.37
1.2	III [18]	$A_5 \rtimes \mathrm{CP}$	0.283	0.593	180°	5.97
1.3	IV [17]	$S_4 \rtimes \mathrm{CP}$	0.318	1/2	$\pm 90^{\circ}$	7.28
1.4	II [17]	$S_4 \rtimes \mathrm{CP}$	0.341	0.606	180°	8.91
1.5	IV [18]	$A_5 \rtimes \mathrm{CP}$	0.283	1/2	$\pm 90^{\circ}$	11.3
2.1	A1 [21]	A_5		0.554	$f_1(heta_{12})$	0.151
2.2	B2 [21]	S_4	0.318		$f_2(heta_{23})$	0.386
2.3	B2 [21]	A_5	0.330		$f_3(heta_{23})$	$\left 2.49 \right $
2.4	B1 [21]	A_5	0.283		$f_4(heta_{23})$	4.40
2.5	B1 [21]	$A_4/S_4/A_5$	0.341		$f_5(heta_{23})$	5.67

ESSnuSB T2HK DUNE ESSnuSB+atm Combination

M. Blennow et al. 2005.12277

Conclusions

 3ν oscillation searches:

- Combining beam and atm data enhance the physics reach of ESSnuSB • After 10 years, the CP fraction for a 5σ discovery is 62 (56)% at 540 (360)km
- Optimise RT to maximise the precision on δ which

Beyond 3ν oscillation searches:

- ESSnuSB could constrain light-steriles and still discover CP violation Discrete flavour models can be tested and constrained/ruled out

can range from $\Delta\delta$ ~6° for CP conservation to $\Delta\delta$ <18° for maximal CP violation

