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Muon beams for particle physics

= Muon as elementary lepton ~200 times heavier than electrons is an excellent
particle for a collider

= Avoiding a large QCD background known in hadron colliders

= Offering a full CM energy for creating new states (in contrary to hadron
colliders)

= Rate of emission of synchrotron radiation is highly suppressed -> allows
compact collider facility

= This also suppresses beamstrahlung -> allows preserving the high quality beam

= Large m, provides large coupling to the Higgs mechanism. Resonant Higgs
production in the s-channel is possible.

= Muon beams are also important
= Anomalous magnetic moment (g-2) — a possible sign of BSM physics

= Searches for Lepton Flavour Violation -> complementary test of SM at a very
high mass scale

= High quality neutrino source -> nuSTORM and the Neutrino Factory
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Muon Collider and Neutrino Factory
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Challenges:
 Muon beams are unstable (muon lifetime at rest ~2.2 us)

« Muons are produced as tertiary beam (p—a—pu)

« Use ionization cooling, which is the only technique fast enough!
» Use high power proton driver
» Develop rapid accelerators
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What is Muon lonization Cooling?

oY ilo¥=dlc

dE/dx . multiple scattering |
Energy loss in the absorbers reduces both p, and p;

re-acceleration

oSt
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Scattering heats the beam

RF cavities restore p, only

The net effect is the reduction of beam emittance — cooling

« strong focusing, low-Z absorber material and high RF
gradient are required

Cooling den _ _ 1 [dEu\ €n 1 B1(0.014GeV)”
Equation; ds g2\ ds [ E, B3> 2E,m,Lg

Cooling Heating

de /ds is the rate of change of normalised-emittance within the absorber;B, E, and m, the muon velocity, energy, and
mass, respectively; B, is the lattice betatron function at the absorber; L is the radiation length of the absorber material.
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Muon Ionization Cooling Experiment
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= Demonstrate high acceptance, tight focusing solenoid lattice

= Demonstrate integration of liquid hydrogen and lithium hydride absorbers
= Validate details of material physics models

= Demonstrate ionization cooling principle and amplitude non-conservation

= MICE operated at RAL between 2008 and 2017 and it groups over 100 collaborators, 10 countries,
30 institutions
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MICE experiment

Protan
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Layout of
MICE

in ISIS proton synchrotron at RAL

= Beamline consisting of dipoles, quads and SC
decay solenoid transported the muon beam to
the cooling apparatus with variable input
conditions

s MICE detectors

= Scintillating fibre trackers for particle by particle
phase space reconstruction by matching the
helical tracks in SC solenoids placed before and
after the absorber

= High precision Time-of-Flight (TOF) detectors for
momentum measurement and PID

= Threshold Cherenkov detectors for PID

= KLOE Light and Electron Muon Ranger for
calorimetry and rejection of decay electrons in
downstream region

Scintillating fibre = Experimentation with three absorber types

« tracker = Lithium hydride absorber, liquid hydrogen
' absorber and polythene wedge absorber
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Magnets

{= Spectrometer solenoids upstream and

1 Focus Coill

. downstream

: MOdUIe = 400 mm diameter bore, 5 coil
- 4 A assembly

= Provide uniform 2-4 T solenoid field
for detector systems

= Integral superconducting match
coils enable choice of beam focus

M = Focus coil module provides tight focus
on absorber

= Two parallel coils - possible to be
energised in opposition to flip
polarity avoiding build up of
canonical angular momentum

‘Solenoid Mode’
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Change in Amplitude Across Absorber — ‘Flip Mode
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= No absorber — decrease in number of core muons this conference.
= With absorber — increase in number of core muons For similar analysis in
] ] the solenoid mode,
= Cooling signal see P. Kyberd's talk

= This provided the world’s first qualitative demonstration of ionization cooling
of muon beam

= The quantitative demonstration is provided by the analysis presented here
(publication in preparation)
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Beam Sampling

= To improve beam at the entrance to the cooling channel beam sampling is
applied
= This is possible as MICE allows for particle by particle reconstruction

= Sampling routine is applied only to the data collected at the same
cooling channel setting but different input beams are allowed

= The aim is to improve the matching to the cooling channel reducing
the emittance growth, improving the transmission and reducing the
value of the betatron function at the absorber

— Target

/v |---Prepesd| m Beam sampling is based on the rejection algorithm

08F P * Accept [

’ ) Reject . I:)selection(x) = Norm * Target(x) / Parent (X)

= Draw u from u[0,1]. If u < Py eciion(X), then
accept event. Otherwise reject it.

= Normalisation ensures that P ) <=1

= Parent PDF is estimated using Kernel Density
Estimation (KDE)

Selection(x
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Beam Sampling (2)

= Beams matched to the upstream spectrometer solenoid are sampled at the
upstream reference plane

= Six beams with different emittances are sampled:
= 1.5, 2.5 mm from the 4 mm dataset
= 3.5, 4.5 mm from the 6 mm dataset
= 5.5, 6.5 mm from the 10 mm dataset
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Emittance Calculation

The 4D normalised RMS transverse emittance
IS defined as

1
my,

Where m, the muon mass and 2 the covariance

matrix:
B O
UZycc T ype UZyy UQypy
\prx Opyps  Ppyy  pypy )
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Emittance evolution in the MICE Cooling Channel

= Selected Data and Simulation
(MC) beams with ~ 4.5 mm
emittance at the upstream tracker & **
reference plane has been used to ' o.1
plot the emittance evolution in the
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= Slight offset from O in upstream
tracker due to limited sampling
accuracy
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Normalized Emittance reduction in ‘Flip Mode’

Results from 140 MeV/c beam

Matched distribution selected in the upstream Tracker using rejection sampling
Clear cooling signal in change of normalized emittance (downstream — upstream)
‘No absorber’ - weak heating due to optical aberrations

‘Empty LH2 ' — weak additional heating due to hydrogen vessel windows

‘Full LH2 * and ‘LiH’ demonstrate emittance reduction (ionization cooling)
Approximate theory: analytical estimate of cooling effect

Good agreement between Data / Simulation / Approximate theory
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Canonical angular momentum change

Leanon = Lgin + Lfield
= Build-up of the canonical angular Ly, = TPy — YPz

momentum can be a problem in
the long cooling channels
proposed for a Muon Collider and
the expected mitigation is 1_
provided by making field flips te |4
across absorbers 05T

= MICE can verify this s
experimentally

= No net mean change observed
between the ‘empty’ and
‘absorber’ cases, as expected for g g5
a flipped field configuration

= In contrast to the ‘Solenoid
mode’, where a net increase is 0.51
observed, see P. Kyberd’s talk o

10-140

y MICE Preliminary

| ISIS Cycle 2017/02,
2017/03

| 2017-2,7

e
(3

o

—_

tive Frequency [a.u.]

0
1F

-2 0 2

-2 0 2
Leanon(TKD) = Leanon{ TKU) [MeV/c m]

Imperial College & « & Technlogy Facilies counc
ISIS

London

J. Pasternak, NuFact’21 14



Summary

= MICE has measured the underlying physics processes that govern cooling

= The unprecedented single particle measurement of particle trajectories in
accelerator lattice has been achieved

= MICE has made world’s first observation of ionization cooling in ‘Flip Mode’
= Nature volume 578, pages 53-59 (2020)
= ‘Solenoid Mode’ results are being prepared for publication

= The quantitative analysis of cooling effect by applying the beam sampling
in ‘Flip Mode’ confirms the cooling effect and verifies the cooling theory

= Publication in preparation

= Evolution of canonical angular momentum in ‘Flip Mode’ seems consistent
with zero, as predicted by theory

= MICE opens the door for high energy muon accelerators as a probe of
fundamental physics
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