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Accelerated Muons

 High energy muons have applications for fundamental physics
 Muon collision
 Neutrino production

 Muon collider
 Muon is a fundamental particle
 Synchrotron radiation highly suppressed
 Ideal collider!

 Neutrino source
 Can characterise muon beam very well
 Muon decay is well-known
 Well-characterised neutrino beam
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Muon Collider

 Growing interest in muon collider as a future facility in Europe
 Only lepton collider with potential to go beyond 3 TeV
 At ~14 TeV, physics reach comparable to 100 TeV protons
 Compact footprint
 Efficient electrical power consumption even at high energy
 Potential for phased construction with physics at each stage

3 TeV
Muon
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Muon Collider

4

 MW-class proton driver → target
 Pions produced; decay to muons
 Muon capture and cooling
 Acceleration to TeV scale
 Collisions
 Critical Issues:

 Short muon lifetime
 High initial beam emittance/Low beam brightness

MAP collaboration
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Muon Accelerator R&D

 MERIT
 Demonstrated principles of pion production in 

solenoid field
 EMMA

 Demonstrated fast acceleration in FFAs
 MUCOOL

 Radio-frequency accelerating cavity R&D
 Demonstrated operation of cavities at high 

voltage in magnetic field
 Breakdown suppression using high pressure gas
 Breakdown suppression using Be surface

 Muon Ionisation Cooling Experiment (MICE)
 Need to increase beam brightness

 Otherwise particles don’t collide
 Technique known as ionisation cooling



  

 Consider a cloud of particles
 Particles move in many different directions
 Particles have a spread in position

 Use a magnetic lens to focus the beam
 Decrease the spread in position
 Increase the spread in momentum

 Use a magnetic lens to defocus the beam
 Increase the spread in position
 Decrease the spread in momentum

 Emittance is area occupied by beam
 The emittance is conserved

 Analogous to temperature
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Absorber

 Beam loses energy in absorbing material
 Absorber removes momentum in all directions
 RF cavity replaces momentum only in longitudinal direction
 End up with beam that is more straight

 Degraded by Multiple Coulomb scattering from nucleus
 Mitigate with tight focussing
 Mitigate with low-Z materials

 Equilibrium emittance where the effects balance

Ionisation Cooling

MUONSRF
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Muon Cooling

Phase rotation

6D cooling

4D Final 
cooling



  

 How can we get muon beams so that we can accelerate 
them?

 Ionisation Cooling!
 Ionisation cooling lattices share common principles

 Compact lattice
 Low-Z absorbers – lH2 and LiH
 Superconducting solenoids

 How can we demonstrate that such a lattice can work?
 The international Muon Ionisation Cooling 

Experiment

Cooling for Muon Accelerators
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The answer - MICE
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Experimental configuration

Measure muon 
position and 
momentum 
downstream

Measure 
individual muon 

position and 
momentum
upstream

Cool the muon 
beam using 
LiH, LH2, or 
polyethylene 

wedge 
absorbers

Beam 
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Collaboration

 Over 100 collaborators, 10 countries, 30 institutions
 Operated at Rutherford Appleton Laboratory between 

2008 and 2017
 Dedicated transport line bringing pions/muons from ISIS 

synchrotron

MICE
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MICE Muon Beam Line

 Muon momenta between 120 and 260 MeV/c
 Muon emittance between 2 mm and 10 mm
 Pion impurity suppressed at up to 99 % level

Bogomilov et al, J.Inst. 11 05006 (2016)
D. Adams et al, Eur. Phys. J. C 73, 2582 (2013)



  14

Superconducting Magnets

 Spectrometer solenoids upstream and downstream
 400 mm diameter bore, 5 coil assembly
 Provide uniform 2-4 T solenoid field for detector systems
 Match coils enable choice of beam focus

 Focus coil module provides final focus on absorber
 Dual coil assembly - possible to flip polarity
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Absorber

 65 mm thick lithium hydride absorber
 350 mm thick liquid hydrogen absorber 

 Contained in two pairs of 150-180 micron thick Al windows
 45o polythene wedge absorber for longitudinal emittance 

studies



  16

MICE Diagnostics

 Three scintillating TOF stations
 Time resolution ~ 50-60 ps
 Commissioned in 2009

 Two Scintillating Fibre Trackers
 Position resolution ~ 0.5 mm
 Simulated momentum resolution 

~ 2 MeV/c
 Threshold Cerenkov counter
 KL pre-shower detector
 Electron-muon ranger

Y. Karadzhov
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Scintillating Fibre Tracker

 Scintillating fibre trackers placed upstream and downstream of 
the cooling channel

 Based on D0 SciFi technology
 5 scintillator stations in up to 4 T uniform field

 Reconstruction of helical path yields particle momentum
 Measured 470 micron position resolution
 Simulated 1-2 MeV/c pt resolution

 Simulated 3-4 MeV/c pz resolution

 Simulated emittance measurement precision at 1e-3 level

Ellis et al, NIM A 659, 
136 (2011)

Dobbs et al, Jinst 11, 
12001 (2016)
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TOF

 3 Time-of-Flight stations
 Two planes of scintillator bars

 Measured 50 – 60 ps time resolution
 Combination of TOF (time→ velocity) and tracker 

(momentum) yields particle mass → PID

Bertoni et al, NIMA 625,  14 (2010)
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Data-Taking 2008-2017

 Data was taken between 2008 and 2017
 Measured

 Scattering
 Energy loss
 Emittance change

 Using the unique particle-by-particle beam reconstruction
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Phase space reconstruction

 MICE individually 
measures every particle

 Accumulate particles into 
a beam ensemble

 Can measure beam 
properties with 
unprecedented precision

Blackmore et al, Eur. Phys. J. C 79, 257 (2019)
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Phase space reconstruction

 MICE individually 
measures every particle

 Accumulate particles into 
a beam ensemble

 Can measure beam 
properties with 
unprecedented precision

 E.g. coupling of x-y from 
solenoid fields
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Amplitude reconstruction

 Phase space (x, px, y, py)
 Normalise phase space 

to RMS beam ellipse
 Clean up tails

 Amplitude is distance of 
muon from beam core

 Conserved quantity in 
normal accelerators

 Ionization cooling 
reduces transverse 
momentum spread

 Reduces amplitude
 Mean amplitude ~ “RMS 

emittance”



  23

Change in amplitude distribution

 No absorber → no change in number of core muons
 With absorber → increase in number of core muons

 Cooling signal

Upstream

Downstream

Rogers et al, Nature 578, 53 (2020)
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Ratio of amplitudes

 Core density increase for LH2 and LiH absorber → cooling
 More cooling for higher emittances
 Consistent with theory and simulation



  

Transverse Emittance

 Also measure change in 
RMS emittance

 Mean of the amplitude 
distribution

 Look at different sub-
samples of the muon 
ensemble

 In absence of absorber weak 
heating

 With absorber
 Cooling for high emittance 

beams
 Heating below equilibrium 

emittance
 Consistent with theory

 Publication in progress

heating

heating

cooling

cooling



  

Solenoid Mode

 Most cooling is done at 0 T
 Non-zero field

 easier magnets 
 angular momentum non-conservation

 Studies in progress on cooling performance in solenoid mode

coolingcooling
cooling
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Where next?

MICE
regime

 To build a muon collider, need lots 
of cooling

 Transverse emittance
 Longitudinal emittance

 MICE has explored only the initial 
part of a muon cooling channel

 Focus on transverse emittance
 What about

 6D cooling (reduce energy spread)
 Cooling at low emittance
 Reacceleration and multi-cell 

cooling
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Demonstrator

 Muon cooling demonstrator
 Demonstrate 6D cooling
 Low emittance
 Many cells

 Potential to share the pion source
 E.g. with neutrino experiment like nuSTORM

Protons

Pion source 
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Conclusions

 Muons are fascinating particles with many applications
 Muon accelerators have the potential to:

 Provide multi-TeV lepton-antilepton collisions
 Provide well-characterised neutrino beam
 Open up an entirely new regime of accelerators

 A significant hardware R&D effort has continued over the 
past two decades

 MERIT
 MuCool
 EMMA
 MICE

 MICE has demonstrated ionization cooling, a key enabling 
technology for muon accelerators

 Studies ongoing for a follow-up experiment
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