Status of the ESSvSB Target Station

Łukasz Łacny (AGH University of Science and Technology)
on behalf of the ESSvSB Project Target Station Working Group (WP4)

NuFact 2021, Cagliari, 07/09/2021
Presentation outline

➢ ESSvSB experiment
➢ Target Station overview and beam parameters
➢ Horn power supply
➢ Power deposition and cooling
 • Granular Target
 • Magnetic Horn
 • Beam Dump
➢ Horn optimization (Genetic Algorithm)
➢ Summary
The far water Cherenkov detector will be placed at the second oscillation maximum, at the Garpenberg mine, 540 km from Lund.
ESSvSB Target Station facility and baseline parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>ESSvSB</th>
</tr>
</thead>
<tbody>
<tr>
<td>Power (MW)</td>
<td>5</td>
</tr>
<tr>
<td>E_{p+} (GeV)</td>
<td>2.5</td>
</tr>
<tr>
<td>Baseline (km)</td>
<td>540</td>
</tr>
<tr>
<td>Target</td>
<td>packed-bed</td>
</tr>
<tr>
<td>Target length (cm)</td>
<td>78</td>
</tr>
<tr>
<td>Target radius (cm)</td>
<td>1.5</td>
</tr>
<tr>
<td>Horn</td>
<td>forward closed</td>
</tr>
<tr>
<td>Horn current (kA)</td>
<td>350 @ 14 Hz</td>
</tr>
<tr>
<td># of horns/targets</td>
<td>4</td>
</tr>
<tr>
<td>Tunnel length (m)</td>
<td>25</td>
</tr>
<tr>
<td>Tunnel size (m x m)</td>
<td>4 x 4</td>
</tr>
<tr>
<td>Exposure (years)</td>
<td>$5 \nu + 5 \text{anti-}\nu$</td>
</tr>
</tbody>
</table>
Layout of the target station facility

Power Supply
8 m of concrete shielding
Target Station
Beam

Not Target-station
Accumulator ring
Switch yard system

beam dump
decay tunnel
4-horn system

P_{beam}
Horn power supply: modular approach

Modular Approach:

- 8 modules of 44kA connected in parallel to provide 350kA to 1 horn.
- 16 modules needed for 4 horns

Currents of capacitors in modules 1&9

Update from ESS Lund 11-12 June 2019 [2]

P. Poussot
Two stages of heat transfer (occurring in parallel): beam → spheres → helium (coolant)

Main assumptions:

- Full transfer of energy from the beam to the spheres happens during a very short finite time at the beginning of each cycle
- The only form of heat transfer between the spheres and the flowing gas (helium) is by forced heat convection, as the helium is forcibly pushed through the target; radiation is considered as negligible
- Heat flux between the surface of the spheres and the cooling gas is proportional to the temperature difference and heat transfer coefficient h [W/m2K]

\[\dot{Q} = 138.53 \text{ kW} \]
Horn-target integration shell design

HORN (part closest to target), aluminium
Constant $p_d = 3.92 \times 10^7$ W/m3
Heat transfer coef. on outer surface $h = 3000$ W/(m2K)

SHELL, titanium
(2 mm thickness, 1mm close to insulation)

GRANULAR TARGET, titanium spheres
(3 mm diameter)

INSULATION (1 mm helium space)

Hole length proportional to power in given cut-out section,
width $w=1.5$ mm, 128 holes every 780/128 mm

Total hole area is twice the size of the inlet/outlet shell area
Target cooling

(titanium spheres, $Q' = 138.53$ kW, $m'=0.2$ kg/s), inner horn diameter $d = 80$ mm

holes of identical length

holes of length proportional to power deposited in given section

Similar calculations performed also for inner horn diameter $d = 60$ mm and for different materials (with corresponding power distribution):

- graphite
- beryllium
- tungsten

Target bending due to thermal gradient is being studied, however the preliminary results show it to be within an acceptable range.

Shell support needs to be designed to reduce the bending.
Horn power deposition (Joule heating + secondary particles)

![Diagram of Joule heat and secondary particles](image)

M. Koziół (2019)\(^1\)

<table>
<thead>
<tr>
<th></th>
<th>End Plate [kW]</th>
<th>Inner1 [kW]</th>
<th>Inner2 [kW]</th>
<th>Inner3 [kW]</th>
<th>Inner4 [kW]</th>
<th>Convex [kW]</th>
<th>Outer [kW]</th>
<th>Total [kW]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Secondary Particles</td>
<td>5.0</td>
<td>7.5</td>
<td>3.1</td>
<td>1.6</td>
<td>1.1</td>
<td>2.5</td>
<td>15.0</td>
<td>35.8</td>
</tr>
<tr>
<td>Joule Heat</td>
<td>1.2</td>
<td>6.2</td>
<td>1.7</td>
<td>0.9</td>
<td>1.7</td>
<td>2.2</td>
<td>1.3</td>
<td>15.2</td>
</tr>
<tr>
<td>Total</td>
<td>6.2</td>
<td>13.7</td>
<td>4.8</td>
<td>2.5</td>
<td>2.8</td>
<td>4.7</td>
<td>16.3</td>
<td>51.0</td>
</tr>
</tbody>
</table>

Loris D’Alessi (2020)

NuFact 2021, Cagliari, 07/09/2021
Horn cooling by water jets

- The calculation of temperature and corresponding necessary water flow were performed based on the provided map of heat power introduced to the selected parts of the horn due to the effect of the beam on the target (secondary particles) and the flow of electricity through the horn (Joule heat losses).
- Heat flow rate between the surface of the section and the cooling medium (water) is proportional to the temperature difference between them and the convection coefficient.
- The transmission of heat occurs only due to the convection from the hot surface of the section to the flowing water.

Numerical analysis results

<table>
<thead>
<tr>
<th></th>
<th>h [W/(m² K)]</th>
<th>Max Temp. [°C] (at Inner1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cooling 1</td>
<td>2000</td>
<td>77.1</td>
</tr>
<tr>
<td>Cooling 2</td>
<td>3000</td>
<td>58.4</td>
</tr>
</tbody>
</table>
ESSvSB beam dump

- **Total E_{dep} in the target station (4-horns) = 4188 kW**
- **Energy deposition from 1 horn-target system on the beam dump**
 - 2D-Gaussian distribution, with $\sigma \sim 36.17$ cm
- **Energy deposition from 4 horn-target systems on the beam dump**
 - Total E_{dep} in the beam-dump (4-horns) = 826 kW

NuFact 2021, Cagliari, 07/09/2021
Beam dump design requirements:

➢ Withstand the energy deposition from the 5 MW proton beam on the four targets.
➢ Offer maximum shielding for the underground site behind it from all secondary radiation.
➢ Being replaceable, whether for the whole structure or its individual parts.
➢ Different structure designs, with outer layout 4 x 4 x 3.2 m³.

Segmented-blocks dump core (baseline):

➢ four independent core blocks, segments.
➢ Each block faces one of the four horns.
➢ Each segment is constructed from two zigzag blocks with 1 cm opening between them, to allow for thermal expansion.
➢ Side and middle support structures to be used as heat sinks for structure cooling.
➢ Water-cooling with canals drilled in the support blocks.
All the results so far consider the baseline solution.

An effort has been made to optimize the target station for physics performance.

A Genetic Algorithm driven optimization has been developed for the design of the ESSνSB target station [1-2].

The starting point of the Genetic Algorithm (GA) applied to the ESSνSB experiment is the current baseline of the Magnetic Horn (MH) and Decay Tunnel (DT) geometry.

According to our results, a larger shape of the horn (with fine tuning of the parameters of the inner region of the horn) and longer decay tunnel lengths are preferred.

Presentations:
[1] L. D’Alessi et al. [ESSvSB], "Optimization of the Target Station for the ESSnSB Project Using the Genetic Algorithm", NeuTel Conference 2021.
The GA applied to the design of the Target Station components

- As a first consequence of the performance of the new 4horn/decay tunnel system, the statistics in the right sign neutrinos is improved [1].
- Furthermore, the sensitivity results improved as well
- Studies are currently on going to determine the feasibility of the horn geometry suggested by the optimization study, from the mechanical point of view.

Presentations:
General conclusions and additional issues under investigation

➢ Proposed design appears feasible, but still more research (including experiments) is required
➢ Calculation of dynamic stress in the spheres (target), horn and beam window
➢ Thermal insulation
➢ Safety and radiation issues
➢ The steps in the design of the target station are being redone for the geometry optimized using the genetic algorithm
➢ Additional experiments are needed in order to investigate several aspects of the target station design
➢ Future plans: next steps will be to expand studies to muon test facility
Contribution (in alphabetical order)

➢ AGH University of Science and Technology
 Piotr Cupiał, Mateusz Kozioł, Łukasz Łacny, Jacek Snamina

➢ Centre National de la Recherche Scientifique (FR)
 Eric Baussan, Elian Bouquerel, Loris D'Alessi, Marcos Dracos, Pascal Poussot, Julie Thomas, Jacques Wurtz, Valeria Zeter

➢ CERN
 Ilias Efthymiopoulos

➢ Universität Hamburg (UHH)
 Tamer Tolba
<table>
<thead>
<tr>
<th>MATERIAL PROPERTIES</th>
<th>Titanium</th>
<th>Graphite</th>
</tr>
</thead>
<tbody>
<tr>
<td>Density [kg/m³]</td>
<td>4850</td>
<td>2250</td>
</tr>
<tr>
<td>Heat transfer coef. [J/kg K]</td>
<td>544.3</td>
<td>709</td>
</tr>
<tr>
<td>Thermal cond. [W/m K]</td>
<td>7.44</td>
<td>24</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ANALYSIS PARAMETERS AND RESULTS</th>
<th>Titanium</th>
<th>Graphite</th>
</tr>
</thead>
<tbody>
<tr>
<td>Power distributed in target [kW]</td>
<td>138.6</td>
<td>78.6</td>
</tr>
<tr>
<td>Horn inner diameter [mm]</td>
<td>60</td>
<td>80</td>
</tr>
<tr>
<td>Shell hole cut-out type</td>
<td>same</td>
<td>prop</td>
</tr>
<tr>
<td>Max local temp [K]</td>
<td>844</td>
<td>577</td>
</tr>
<tr>
<td>Max local velocity [m/s]</td>
<td>445</td>
<td>497</td>
</tr>
<tr>
<td>Pressure drop [bar]</td>
<td>4.1</td>
<td>4.3</td>
</tr>
</tbody>
</table>
An analytical model has been developed, which allows for the calculation of the steady-state temperature in the beam window, under a train of beam pulses.

Steady-state results that account for an impulsive nature of the beam can differ from those calculated using power averaged over time, depending on the spatial distribution of deposited power.

It has been proposed that water cooling is by means of a channel at the beam window base.

Acceptable temperature levels are obtained under reasonable water flow conditions.

Additional analysis is still needed to determine the heat film coefficient more accurately, based on the water flow parameters.