An accumulator ring for the 5 MW beam for the

Maja Olvegård, Uppsala University

on behalf of the ESSnuSB WP3 team

Y. Zou, E. Bouquerel, I. Efthymiopoulos, A. Alekou, H. Schönauer, E. Wildner, T. Ekelöf

Outline

- ESS and ESSnuSB
- The accumulator ring
 - Injection
 - Collimation
 - RF
 - Extraction
- The beam switchyard
- Outlook

ESS – a unique linac

- World unique beam power
 - 5 MW average
 - 125 MW peak
- Moderate energy 2 GeV
- Long pulses
- Moderate rep. Rate: 14 Hz
- Low duty cycle: 4%

We want to increase the duty cycle by doubling the pulse repetition rate.

linac

A long-baseline neutrino oscillation experiment

We need microsecond to...

- reduce experiment background
- save the focusing horn from melting

A long-baseline neutrino oscillation experiment

Accumulator ring

- Ring design inspired by the accumulator ring * at the Spallation Neutron Source, SNS, Oakridge
 - Adapted for higher energy and intensity
- Original lattice by H. Schönauer, CERN
- Accumulation and storage, no acceleration.
- Multi-turn injection of H⁻
- Single-turn extraction
- Challenges:
 - Uncontrolled beam loss <1 W/m
 - Injection and stripping
 - Extraction gap
- 384 m circumference, 1.33 µs revolution period

The accumulator ring lattice and optics

Phase-space painting

- Phase space painting optimized through multi-particle tracking simulations with PTC-ORBIT and pyORBIT.
- Flat distribution to minimize space charge
- Reduce stray foil hits of circulating particles
- Final emittance ~70 mm mrad
 - Possible to go down to 30-40 mm mrad without too much space charge issues (halo formation, tune shift).
- Tune spread <0.05

Injection stripper foil

Experience from SNS:

- Stripper foil lifetime an issue.
- Laser-stripping experiments ongoing.
- Convoy electrons must be carefully taken care of.

Y. Zou, Uppsala University

Collimation

Beam injection

SS1
Arc
SS1
Arc
Arc
SS3
Arc
Arc
Arc
Arc
SS3
Beam extraction

Primary collimator,

horizontal and vertical

- 1 W/m means fractional loss <10⁻⁴
- Collimation for controlled beam cleaning
- Two-stage system:
 - 1. Scraper
 - 2. Absorbers

35.

RF cavities

- 10% extraction gap for every turn
 - Beam free gap for ramping extraction kicker magnets
- Created in the linac by chopping
- Maintained >100 ns in the ring with barrier RF cavities
 - Kicks eloping particles back into the core
 - Preserves energy distribution
- Dual-harmonic increases energy spread too much.
- Barrier RF is better.

Single-turn Extraction

- Goal: loss-free single-turn extraction
- 4x4 extraction kicker magnets
 - Ramped in 100 ns
 - Vertical kick
- Horizontal dipole septum magnet deflects beam
- Tolerance for kicker failure

Transfer line and switchyard

ESSnuSB accelerator complex

Linac-to-ring transfer line

- Limit magnetic field to 0.15 T to limit Lorentz stripping of H⁻
- Balance beam size and dispersion to limit aperture and intra-beam stripping losses.

Accumulator ring

- Charge-exchange injection with phase-space painting
- Two-stage collimation system for beam loss control
- RF cavities for maintaining beam free extraction gap
- Single-turn extraction with kicker magnets and septum

Ring-to-switchyard transfer line and beam switchyard

• Bring beam from ring extraction to beam switchyard and distribute four beam batches over four targets.

Outlook

- ESSnuSB design study coming to an end
 - Conceptual Design Report taking shape
 - Cost estimate
- Next step: prepare for the next phase
 - Refined design and sensitivity studies
 - Muon program

Extra slides

Pulse structure: End of linac/transfer line

Pulse structure: In the switchyard $3.48~\mathrm{ms}$ 71.4 ms $1.1~\mathrm{kHz}$ before accumulation 29.8 A $794 \ \mu s$ $1.2~\mu \mathrm{s}$

Assuming 1.33 µs revolution time and 0.1 µs extraction gap

Beam energy	2.5 GeV
Filling time	800 μs
Ring circumference	384 m
Revolution time	1.33 μs
Injected turns	600
Extraction gap (at inj./extr.)	0.13/0.10 μs
Pulse duration at extraction	1.2 μs
# protons per fill	2.23E14
Emittance at extraction (unnormalized, 100%)	70 mm mrad
Pulse frequency at extraction	1.1 kHz

Max. magn. field in transfer line 0.15 T

Energy distribution

