Analysis of Multiple Coulomb Scattering of Muons in the MICE

Liquid Hydrogen Absorber

Gavriil Chatzitheodoridis^{a,b,c}

On behalf of the MICE collaboration

[a] University of Strathclyde, Department of Physics, 107 Rottenrow East, Glasgow UK, G4 0NG
 [b] University of Glasgow, School of Physics and Astronomy, Kelvin Building, University Avenue, Glasgow UK, G12 8QQ
 [c] Cockcroft Institute, Daresbury Laboratory, Sci-Tech Daresbury, Daresbury, Warrington UK, WA44AD

09/09/21

Introduction

- Multiple Coulomb Scattering: multiple elastic collisions a charged particle undergoes when crossing a material.
- Accurate **MCS** predictions are key in enabling design of such ionization cooling systems
- **MCS** causes emittance growth, the effect is mitigated by using a low-Z absorber at a magnetic focus point.

The cooling equation^[2] (for normalised transverse emittance):

$$\frac{d\epsilon_{n\perp}}{dz} \approx -\frac{\epsilon_{\perp}}{\beta^2 E_{\mu}} \left\langle \frac{dE_{\mu}}{dz} \right\rangle + \frac{\beta_{\perp} (13.6 M eV/c)^2}{2\beta^3 E_{\mu} m_{\mu} X_0}$$

- Liquid hydrogen has been shown experimentally to be the most effective¹¹
- Experiments (172MeV/c muons in liq. H₂) have shown scattering behaviour diverging from theoretical models:

Moliere MCS model

- GEANT4 v4.7.0p01
- The **aim** is to assess the latest GEANT4 simulation and Moliere's mathematical MCS model in a fieldoff setting (straight tracks)

[1] MICE collaboration., Bogomilov, M., Tsenov, R. et al. Nature 578, 53-59 (2020)

^[2] D. Neuffer, Part. Accel.14 75-90 (1983)

^[3] Muscat collaboration, Nucl. Instrum. Meth. Sec. A, vol. 83, pp. 492-504, (2005)

Introduction

- Multiple Coulomb Scattering: multiple elastic collisions a charged particle undergoes when crossing a material.
- Accurate **MCS** predictions are key in enabling design of such ionization cooling systems
- **MCS** causes emittance growth, the effect is mitigated by using a low-Z absorber at a magnetic focus point.

The cooling equation^[2] (for normalised transverse emittance):

$$\frac{d\epsilon_{n\perp}}{dz} \approx -\frac{\epsilon_{\perp}}{\beta^2 E_{\mu}} \left\langle \frac{dE_{\mu}}{dz} \right\rangle + \frac{\beta_{\perp} (13.6 M eV/c)^2}{2\beta^3 E_{\mu} m_{\mu} X_0}$$

COOLING HEATING

- Liquid hydrogen has been shown experimentally to be the most effective^[1]
- Experiments (172MeV/c muons in liq. H₂) have shown scattering behaviour diverging from theoretical models:

Moliere MCS model

- GEANT4 v4.7.0p01
- The **aim** is to assess the latest GEANT4 simulation and Moliere's mathematical MCS model in a fieldoff setting (straight tracks)

[1] MICE collaboration., Bogomilov, M., Tsenov, R. et al. Nature 578, 53-59 (2020)

^[2] D. Neuffer, Part. Accel.14 75-90 (1983)

^[3] Muscat collaboration, Nucl. Instrum. Meth. Sec. A, vol. 83, pp. 492-504, (2005)

Selection Criteria/Surviving Events

Selection criteria

- US TOF space-points required for:
 - Velocity selection
 - Particle identification
 - Particles with US Track
 - Particle has passed clear of preceding high-Z structure (Diffuser ring)
 - DS track expected to be within tracking volume of homogenous efficiency

Selection Criteria/Surviving Events

Events / Total Entries

Selection Criteria/Surviving Events

Events / Total Entries

Selection Criteria/Surviving Events

Events / Total Entries

09/09/21

Selection Criteria/Surviving Events

Results - MCS measurement

2D Projected angles

Empty vessel

Liq. H₂

Results are expressed as angles between US and DS track vectors when projected unto orthogonal planes

θ_y: On plane defined by US vector and y-axis

 On plane defined by US vector and orthogonality to above

Analysis of Multiple Coulomb Scattering of Muons in the MICE Liquid H₂

Absorber

Summary

- MCS measurement using experimental data of the MICE muon beam crossing $\sim\!35 \text{cm}$ of LH_{2}
- For ~170, 200, 240 MeV/c beam momenta
- Observations on results:
 - Projected angle distribution width decreases as beam momentum increases
 - Liquid H₂ on beam path increases width
- Only statistical errors are shown

Future work

- Systematic uncertainty calculation
- Momentum dependent comparison with predictions from:
 - GEANT4 MC simulation
 - Moliere MCS model with convolution analysis:
 - Experimental empty vessel distribution convoluted with predicted liq. H₂ and compared with experimental full absorber distribution.