Status and future prospects of Lepton Universality tests at LHCb

Resmi P. K. (on behalf of LHCb Collaboration)

Aix Marseille Univ, CNRS/IN2P3, CPPM

NuFact 2021

September 8, 2021

Lepton Flavour Universality

- SM is Lepton flavour universal
 - Electroweak couplings to all charged leptons are universal
 - $\bullet\,$ Difference between e,μ and τ driven only by mass
- LFU tests with ratios of branching fractions of decays involving different $\ell = e, \mu, \tau$

LHCb experiment

- LHCb is one of the experiments based at LHC, CERN, Geneva
- Forward spectrometer with a broad physics programme including beauty, charm and top quarks, heavy ions, electro-weak physics, Higgs physics,...

LHCb experiment

- Excellent vertex resolution (10 40 μ m in xy-plane and 50 300 μ m in z-axis)
- Particle identification efficiencies 80% 95% for correct kaon and 3% – 10% misidentification of pion as kaon
 JINST 3 (2008) S08005, Nucl. Phys. B 871 (2013) 1-20, JHEP 74 (2017)

$b ightarrow c \ell u_\ell$ transitions

- Tree-level semileptonic decays
- Uncertainties related to Form Factor normalizations *mostly* cancel in the ratio
- Ratios sensitive to possible enhanced coupling to the 3rd generation (*e.g.* Leptoquarks^[1]) predicted by some NP models

¹PRL 116, 081801, PRD 94, 115201

$R(X_c)$ measurements at LHCb

- LHCb Run 1 data : 3 fb⁻¹, 2011-12
- Neutrinos not detected; approximation needed for *B* reconstruction
- Measurements with muonic au decays
 - $\tau^- \rightarrow \mu^- \nu_\mu \nu_\tau$
 - $R(D^*)$ and $R(J\!/\psi)$ measurements
 - Same visible final state $X_c \mu^+$
- Measurements with hadronic au decays
 - $au^-
 ightarrow \pi^+\pi^-\pi^-(\pi^0)
 u_{ au}$ 3-prong decays
 - $R(D^*)$ measurement

R(D*) muonic at LHCb [PRL 115, 111803 (2015)]

• B reconstruction with the approximation

$$(p_B)_z = rac{m_B}{m_{reco}}(p_{reco})_z$$

• Separate τ and μ via 3D binned template fit to kinematic variables

•
$$q^2 = (p_B - p_{D^*})^2$$

• $m_{\text{miss}}^2 = (p_B - p_{D^*} - p_{\ell})^2$
• $E_{\mu^+}^*$, muon energy

$R(D^*)$ muonic at LHCb [PRL 115, 111803 (2015)]

- Backgrounds with additional charged tracks rejected using BDT
- Main remaining backgrounds:
 - $B \rightarrow D^{**} \mu \nu$, $B \rightarrow D^{**} \tau \nu$
 - $B_s \rightarrow D_s \mu \nu$
 - $B \rightarrow D^{*+}H_cX$, where H_c decays semileptonically
 - combinatorial wrong-sign final state combinations
 - Hadrons (π, K, p) misidentified as muons
- Binned maximum likelihood fit with 3D templates of signal, normalization and background sources
- Signal and background shapes extracted from control samples and simulations validated against data

R(D*) muonic at LHCb [PRL 115, 111803 (2015)]

- The fit extracts the relative contributions of signal and normalization modes and their form factors
- Signal more visible in the high q² bin

 $R(D^*) = 0.336 \pm 0.027 \pm 0.030$

 2.1σ above SM

• Dominant systematic uncertainty - size of simulation sample

Resmi P. K. (CPPM)

11/28

$R(D^*)$ hadronic at LHCb [PRL 120, 171802 (2018)], [PRD 97, 072013 (2018)]

• Three-prong decays $au^+ o 3\pi^\pm (\pi^0) \overline{
u}_ au$

$$R(D^*) = \mathcal{K}(D^*) \frac{\mathcal{B}(B^0 \to D^{*-} 3\pi^{\pm})}{\mathcal{B}(B^0 \to D^{*-} \ell \nu_{\ell})} \qquad \mathcal{K}(D^*) = \frac{\mathcal{B}(B^0 \to D^{*-} \tau^{\pm} \nu_{\tau})}{\mathcal{B}(B^0 \to D^{*-} 3\pi^{\pm})}$$

- Same visible final state for the normalization mode $B^0
 ightarrow D^{*-} 3 \pi^\pm$
- Main backgrounds
 - $B \rightarrow D^{*-} 3\pi^{\pm} X$
 - Double charm $(B \rightarrow D^{*-}(D_s^+, D^+D^0)X)$

- B → D^{*-}3π[±]X suppressed by requiring the τ vertex to be downstream w.r.t B vertex along the beam direction
- $\Delta z > 4\sigma_{\Delta z}$ improves S/B by 160
- A BDT based on kinematics and resonant structure to suppress $B \rightarrow D^{*-}D_s^+X$

$R(D^*)$ hadronic at LHCb [PRL 120, 171802 (2018)], [PRD 97, 072013 (2018)]

- A 3D binned template fit to extract the signal yield
 - $q^2 \equiv |P_{B^0} P_{D^*}|^2$,
 - τ^+ decay time,
 - Output of BDT trained to discriminate τ from D⁺_s.
- Templates selected from simulation and data control samples
- $N(B^0 \rightarrow D^{*-} \tau^+ \nu_{\tau}) = 1296 \pm 86$

 $R(D^*) = 0.280 \pm 0.018(\text{stat}) \pm 0.026(\text{syst}) \pm 0.013(\text{ext})^*$ 1σ above SM

Latest value after rescaling the updated value of $\mathcal{B}(B^0 o D^{-} \ell \nu_\ell)$

$\mathsf{R}(J\!/\psi\,)$ at LHCb [PRL 120, 121801 (2018)]

$$R(J/\psi) = \frac{\mathcal{B}(B_c^+ \to J/\psi \,\tau^+ \nu_{\tau})}{\mathcal{B}(B_c^+ \to J/\psi \,\mu^+ \nu_{\mu})}$$

- Muonic au final state
- Form factors directly from data
- Signal extraction using binned template fit to m_{miss}^2 , B_c decay time and Z,
 - Z contains 8 bins in E_{μ} and q^2 (first 4 bins with $q^2 < 7.14$ GeV², the rest $q^2 > 7.14$ GeV²)

$\mathsf{R}(J\!/\psi\,)$ at LHCb [PRL 120, 121801 (2018)]

- Component shapes are derived from control samples or simulations validated against data
- Main backgrounds - $B_c \rightarrow H_c X$, hadron mis-ID for μ
- First evidence for the decay mode (3σ)

 $R(J/\psi) = 0.71 \pm 0.17 \pm 0.18$

2σ above SM

• Main systematics - form factor and size of simulation sample

$R(X_c)$ measurements

$R(D) - R(D^*)$

• Combination of R(D) and $R(D^*)$ is 3.1σ from SM

• increase to ${\bf 3.8}\sigma$ with latest SM prediction from LCSR + LQCD + UB + HQET^{[2]}

 $R(D)_{SM}=0.2989\pm0.0032;\ R(D^*)_{SM}=0.2472\pm0.0050$ 2 M. Bordone, N. Gubernari, M. Jung, D. van Dyk, EPJC **80**,347 (2020),1912.09335

Ongoing analyses

- $R(D^+)$
- R(D*) (e μ)
- Combined $R(D^*) R(D^0)$ measurement
- R(D**)
- $R(D_s^*)$
- R(J/ψ)
- R(Λ^(*)_c)

- ${\sf arXiv:} 2101.08326, \ {\sf arXiv:} 1808.08865$
- Exploring new observables beyond the branching fraction ratios, *e.g.* angular observables to determine spin structure of potential NP
 - $B
 ightarrow D^* \mu(au)
 u$ muonic and hadronic

$b \rightarrow s \ell \ell$ transitions

Anomalies in $b \rightarrow s \ell \ell$ transitions

- Several deviations seen in branching fractions and angular observables
- Hadronic effects largest contributor to the theoretical uncertainties

- BF and angular observables potentially suffer from underestimated hadronic effects
- Ratios between decays to different leptons very well predicted

$$R_{H} = rac{\mathcal{B}(H_{B} o H\mu^{+}\mu^{-})}{\mathcal{B}(H_{B} o He^{+}e^{-})} = 1.00 \pm 0.01^{[3]}$$

• Deviations would point towards NP! ³JHEP 06 (2016) 092, EPJC 76 (2016) 440

$R_{K^{(*)}}$ measurements at LHCb

• At LHCb, we measure the double ratios

$$R_{\mathcal{K}^{(*)}} = \frac{\mathcal{B}(B \to \mathcal{K}^{(*)}\mu^{+}\mu^{-})}{\mathcal{B}(B \to \mathcal{K}^{(*)}e^{+}e^{-})} \left/ \frac{\mathcal{B}(B \to J/\psi(\mu^{+}\mu^{-})\mathcal{K}^{(*)})}{\mathcal{B}(B \to J/\psi(e^{+}e^{-})\mathcal{K}^{(*)})} \right.$$

- Better control of efficiency in double ratio with control mode
- Cancellation of most experimental systematics
- Detector efficiencies from simulation are calibrated with control channels in data
- Define three regions
 - Rare mode

 (1.1 < q² < 6.0 GeV²)
 - Control mode, dominated by J/ψ resonance
 - ψ(2S) mode

• Electrons are light, scatter more in detector \Rightarrow Bremsstrahlung emission

• Recover the energy loss by adding photon cluster energy compatible with electron direction, to the electron momentum

• In fits to the rare mode, R_K extracted as fit parameter

- Relative efficiencies gaussian constraints in fit
- Fit model dominant systematics ($\sim 1\%$)

R_K measurement at LHCb [arXiv:2103.11769 [hep-ex]]

- Fit crosschecks in $J\!/\psi$ and $\psi(2S)$ regions to validate the procedure
- No expected LFU violation effects
- Tests control of electron vs muon efficiencies in $J\!/\psi$ region

•
$$r_{J/\psi} = 0.981 \pm 0.020$$

•
$$R_{\psi(2S)} = 0.997 \pm 0.011$$

R_K measurement at LHCb [arXiv:2103.11769 [hep-ex]]

• Updated R_K at LHCb with 9 fb⁻¹ is

 $R_{K}(1.1 < q^{2} < 6.0 \text{GeV}^{2}) = 0.846^{+0.042}_{-0.039}(\text{stat.})^{+0.013}_{-0.012}(\text{syst.})$

- Significance 3.1σ w.r.t SM
- Evidence of LFU violation in $B^+ \rightarrow K^+ \ell^+ \ell^$ decays!

[BaBar - PRD 86 03 (2012)] [Belle - JHEP 03 (2021) 105]

Resmi P. K. (CPPM)

26 / 28

LFU measurements at LHCb

arXiv:2103.11769 [hep-ex]

Evidence of LFU violation at 3.1σ

Updated measurements underway

Summary and prospects

- Discrepancies observed in behaviour of leptons in B decays
- Tensions seen in $b
 ightarrow c \ell
 u_\ell$ decays
- Evidence of LFU violation at 3.1 σ in $b \rightarrow s\ell\ell$ decays
- Many new measurements and updates underway at LHCb
- LHCb Run 3 will start very soon and expect to collect 25 fb⁻¹
- Interesting times ahead!

thank you!

Back up slides

