Probing axion-like particles with reactor neutrino experiments

Dimitrios K. Papoulias

University of Ioannina, Greece NuFACT 2021, 5-11 September 2021, Cagliari Italy

Based on: JHEP 03 (2021) 294 in collab. with D. Aristizabal, V. De Romeri & L.J. Flores

Operational Programme Human Resources Development, Education and Lifelong Learning

Co-financed by Greece and the European Union

Outline

Introduction

ALP production at reactor experiments

- Photon flux
- Production mechanisms and ALP flux

3 ALP detection

- detection cross section: Primakoff, Compton, Axioelectric effect
- ALP decays

Sensitivities

- probing the ALP-photon, -electron and -nucleon couplings
- comparison with other experimental probes and astrophysical results

Summary

ALP motivations

Axions: Nambu-Goldstone bosons from the breaking of a color anomalous global chiral U(1) symmetry which is spontaneously broken in the vacuum. [Peccei & Quinn, PRL 38 (1977) 1440], [Weinberg, PRL 40 (1978) 223], [Wilczek, PRL 40 (1978) 279]

- solution to the strong CP problem
- dark matter candidate
- m_a and f_a are related $ightarrow m_a = 5.7 \left(10^{12} {
 m GeV}/f_a
 ight) \mu {
 m eV}$

Axion-like particles (ALPs): *Pseudo Nambu-Goldstone bosons of spontaneously broken global symmetries.*

- Lepton symmetry: Majoron [Chikashige et. al, PLB 98 (1981) 2651981]
- Family symmetry: Familon [Wilczek, PRL 49 (1982) 1549]
- Flavor symmetry: Flavon
- m_a and f_a are not related \rightarrow mass does not arise from QCD effects

Current status of ALP-related experimental searches

- helioscopes (CAST) & haloscopes (Abracadabra, ADMX, CASPEr...)
- interferometry (ADBC, DANCE) & polarization exps (PVLAS)
- beam dump & fixed target experiments (FASER, LDMX, NA62, NA64..)
- colliders & dark matter DD experiments (XENON, LUX, CDMS..)
- astrophysical observations (Stellar energy-losses)

plots from: C. O'Hare (https://github.com/cajohare/AxionLimits) 10.5281/zenodo.3932430 and references therein

Our goal: Explore ALPs in view of reactor neutrino experiments via nuclear and electron recoil measurements [Dent et al. PRL. 124 (2020) 21, 211804]

ALP production @ nuclear reactors

Nuclear reactors utilized as a high intensity photon flux

Photon flux

SM processes

[https://physics.nist.gov/PhysRefData/Xcom/html/xcom1.html]

6 / 24

a fraction of these photons can be converted into ALPs

Nuclear reactors utilized as a high intensity photon flux

Photon flux from nuclear transitions

TEXONO Collab., Phys. Rev. D 75 (2007) 052004

- (mainly) M1 transition from the excited state to the ground state of ⁷Li
- M4 transitions from the excited to the ground state of ⁹¹Y, ⁹⁷Nb, ¹³⁵Xe and ¹³⁷Ba
- thermal neutron capture on proton in the cooling water, $p+n \rightarrow d+\gamma$. The deuteron ground state has magnetic dipole and electric quadrupole moments, the emitted γ is therefore mainly M1

a fraction of these photons can be converted into ALPs

ALP production mechanisms

Phenomenological parametrization via dim-5 effective operators

$$\mathcal{L} = -\frac{1}{4} g_{a\gamma\gamma} \, aF_{\mu\nu} \widetilde{F}^{\mu\nu} - ig_{aee} \, a \, \bar{e}\gamma_5 e - ia\bar{n}\gamma_5 \, \left(g_{ann}^{(0)} + \tau_3 g_{ann}^{(1)}\right) \, n$$

Continuous ALP flux

$$\frac{d\Phi_{a}^{\mathsf{P}}}{dE_{a}} = \mathcal{P}_{\mathsf{surv}} \int_{E_{\gamma',\mathsf{min}}}^{E_{\gamma',\mathsf{max}}} \frac{1}{\sigma_{\mathsf{Tot}}} \frac{d\sigma_{\mathsf{ALP}}^{\mathsf{prod}}}{dE_{a}} (E_{\gamma'}, E_{a}) \frac{d\Phi_{\gamma'}}{dE_{\gamma'}} \ dE_{\gamma'} \ , \quad \mathsf{with} \ \sigma_{\mathsf{Tot}} = \sigma_{\mathsf{SM}} + \sigma_{\mathsf{ALP}}^{\mathsf{prod}}$$

[Dent et al. PRL. 124 (2020) 21, 211804]

- Survival probability, assuring that the ALP flux reaches the detector: $\mathcal{P}_{surv} = e^{-LE_a/|\vec{p}_a|\tau}$
- L: distance between the reactor and detector
- τ: ALP lifetime in the fixed target frame

ALP production mechanisms

Phenomenological parametrization via dim-5 effective operators

$$\mathcal{L} = -\frac{1}{4} g_{a\gamma\gamma} \, aF_{\mu\nu} \widetilde{F}^{\mu\nu} - ig_{aee} \, a \, \bar{e}\gamma_5 e - ia\bar{n}\gamma_5 \, \left(g^{(0)}_{ann} + \tau_3 g^{(1)}_{ann}\right) \, n$$

Monochromatic ALP flux for the *i*-th transition

$$\left(\frac{\mathrm{d}\Phi_a^{\mathsf{MT}}}{\mathrm{d}E_a}\right)_i = \phi_a^i \,\delta(E_{\gamma'} - E_a) = R_f \Phi_\gamma^i \left(\frac{\Gamma_a}{\Gamma_\gamma}\right)_i \mathcal{P}_{\mathsf{surv}} \,\delta(E_{\gamma'} - E_a) \qquad (i = \mathsf{p}(\mathsf{n},\gamma)\mathsf{d}, \ \mathsf{MJ}) \ ,$$

- fission rate: R_f
- photon flux per fission: Φ_{γ}^{i}
- branching ratio of ALP to photon e mission in the nuclear transitions: $\left(\frac{\Gamma_a}{\Gamma_{\infty}}\right)$.

ALP production cross sections

$g_{a\gamma\gamma}$ coupling

• Primakoff scattering: $\gamma + N \rightarrow a + N$ [Aloni et al. PRL 123 (2019) 7, 071801]

$$\frac{\mathrm{d}\sigma_{\text{Prim}}^{\text{prod}}}{\mathrm{d}t} = 2\alpha Z^2 F^2(t) g_{a\gamma\gamma}^2 \frac{M_N^4}{t^2 (M_N^2 - s)^2 (t - 4M_N^2)^2} \left\{ m_a^2 t (M_N^2 + s) - m_a^4 M_N^2 - t \left[(M_N^2 - s)^2 + st \right] \right\}$$

Primakoff scattering: $E_{\gamma} \simeq E_a$ photon energy is coherently converted into ALP energy

g_{aee} coupling

• Compton-like scattering: $\gamma + e^-
ightarrow a + e^-$ [Brodsky et al. PRL 56 (1986) 1763]

$$\frac{\mathrm{d}\sigma_{\mathsf{Compt}}^{\mathsf{prod}}}{\mathrm{d}E_{\mathsf{a}}} = \frac{Z\pi g_{\mathsf{aee}}^2 \alpha x}{4\pi (s - m_e^2)(1 - x)E_{\gamma'}} \left[x - \frac{2m_a^2 s}{(s - m_e^2)^2} + \frac{2m_a^2}{(s - m_e^2)^2} \left(\frac{m_e^2}{1 - x} + \frac{m_a^2}{x} \right) \right] \,,$$

where $x = 1 - \frac{E_a}{E_{\gamma'}} + \frac{m_a^2}{2E_{\gamma'}m_e} \,.$

ALP production from MJ transitions

g_{ann} coupling

• neutron capture isovector M1 transitions (pn \rightarrow d γ) depend only on kinematics

$$\left(\frac{\Gamma_{a}}{\Gamma_{\gamma}}\right)_{pn} = \frac{1}{2\pi\alpha} \left(\frac{|\vec{p}_{a}|}{|\vec{p}_{\gamma}|}\right)^{3} \left(\frac{g_{ann}^{(1)}}{\mu_{1}}\right)^{2} \label{eq:gamma} \, ,$$

[Barroso, Mukhopadhyay, PRC C24 (1981) 2382]

MJ transitions are nuclear structure dependent

$$\left(\frac{\Gamma_{a}}{\Gamma_{\gamma}}\right)_{\rm MJ} = \frac{1}{\pi\alpha} \left(\frac{1}{1+\delta^{2}}\right) \left(\frac{J}{J+1}\right) \left(\frac{|\vec{p}_{a}|}{|\vec{p}_{\gamma}|}\right)^{2J+1} \left(\frac{g_{ann}^{(0)}\kappa + g_{ann}^{(1)}}{(\mu_{0} - 1/2)\kappa + (\mu_{1} + \eta)}\right)^{2}$$

- Isovector magnetic moment: $\mu_1 = \mu_p \mu_n = 4.71 \ \mu_N$
- Isosinglet magnetic moment: $\mu_0 = \mu_p + \mu_n = 0.88 \ \mu_{
 m N}$
- δ, η, κ are nuclear structure dependent [TEXONO collab., PRD 75 (2007) 052004]
 [Avignone III et al., PRD 35 (1987) 2752]

~

Typical ALP fluxes from a nuclear reactor

Experiment	Nuclear Reactor	Power [GW]
TEXONO [41]	Kuo-Sheng Nuclear Power Station	2.9
CONUS [37]	Brokdorf	3.9
νGeN [72]	Kalinin Nuclear Power Plant	~ 1
MINER [36]	TRIGA 1	10^{-3}
$\nu {\rm CLEUS}~[38]$	FRM2	4
Ricochet [39]	Chooz Nuclear Power Plant	8.54
RED-100 [40]	Kalinin Nuclear Power Plant	~ 1
SBC [73]	ININ (or Laguna Verde)	10^{-3} (2)
CONNIE [74]	Angra 2	3.8
vIOLETA [75]	Atucha II	2
SoLid [76]	BR2	$(0.4,1) \times 10^{-1}$
NEON [77]	Hanbit Nuclear Power Plant	2.8

Detector	Experiment	Material	$\mathbf{m}_{\mathrm{det}}[\mathbf{kg}]$	L [m]	
Semiconductor	TEXONO [41]	Ge	1.06	28	
detectors	CONUS [37]	Ge	1	17.1	
(ionization)	$\nu { m GeN}$ [72]	Ge	1.6-5	10-12	
Low	MINER [36]	Ge, Si	4	1 - 2.5	
temperature	$\nu {\rm CLEUS}~[38]$	$\mathrm{CaWO}_4,\mathrm{Al}_2\mathrm{O}_3$	10^{-2}	15-100	
bolometers	Ricochet [39]	Ge, Zn	10	355/469	
Liquid noble-gas	RED-100 [40]	Xe	100	19	
detectors (TPC)	SBC [73]	LAr, Xe	10	3/30	
CCD	CONNIE [74]	Si	~ 0.05	30	
	vIOLETA [75]	Si	1	12	
Scintillators	SoLid [76]	$^{6}\mathrm{LiF}:\mathrm{ZnS}(\mathrm{Ag})$	1600	~ 7.6	
	NEON [77]	NaI[Tl]	3.3-10	24	

[Aristizabal, De Romeri, Flores, DKP, JHEP 03 (2021) 294]

Typical reactor

- P = 4 GW
- *L* = 10 m

ALP detection cross sections

$g_{a\gamma\gamma}$ coupling

 inverse Primakoff scattering: a + N → γ + N same as the production cross section but a factor 2 larger due to spin

g_{aee} coupling

• inverse Compton-like scattering: $a + e^- \rightarrow \gamma + e^-$ [Avignone et al. PRD 37 (1988) 618-630]

$$\begin{split} \frac{d\sigma_{\text{Compt}}^{\text{def}}}{dE_{\gamma}} &= \frac{Zg_{aee}^2 \alpha E_{\gamma}}{4m_e^2 |\vec{p}_a|} \left| \frac{2(E_a + m_e - |\vec{p}_a|\cos\theta)^2}{|\vec{p}_a|y} \right| \\ & \times \left(1 + \frac{4m_e^2 E_{\gamma}^2}{y^2} - \frac{4m_e E_{\gamma}}{y} - \frac{4m_e^2 |\vec{p}_a|^2 m_e E_{\gamma}(1 - \cos^2\theta)}{y^3} \right), \qquad y = 2m_e E_a + m_a^2 \end{split}$$

• axio-electric cross section: $a + e^- + Z \rightarrow e^- + Z$ [Derevianko et al. PRD 82 (2010) 065006]

$$\sigma_{\rm axioel}^{\rm det} = \frac{g_{\rm aee}^2}{\beta} \frac{3E_{\rm a}^2}{16\pi\alpha m_{\rm e}^2} \left(1 - \frac{\beta^{2/3}}{3}\right) \sigma_{\rm PE} \,, \qquad \beta = |\vec{p}_{\rm a}|/E_{\rm a}$$

14 / 24

$g_{a\gamma\gamma}$ coupling

• ALP diphoton decay:

$$\Gamma_{a\to 2\gamma} \equiv \Gamma(a\to \gamma\gamma) = \frac{g_{a\gamma\gamma}^2 m_a^3}{64\pi}$$

g_{aee} coupling

• ALP decay to electron pair:

$$\Gamma_{a \to e^+e^-} = \frac{g_{aee}^2 m_a}{8\pi} \sqrt{1 - 4\frac{m_e^2}{m_a^2}}$$

Number of events

scattering processes

$$\frac{d\mathcal{N}_{X}^{\text{scatt}}}{dE_{a}} = m_{\text{det}} \frac{N_{T} \Delta t}{4\pi L^{2}} \int \frac{d\Phi_{a}}{dE_{a}} \frac{d\sigma_{X}^{\text{det}}}{dE_{\gamma}} dE_{\gamma} , \quad X = \{\text{Prim., Compt.}\}$$

$$\frac{\mathrm{d}\mathcal{N}_{\mathsf{axioel}}}{\mathrm{d}\mathcal{E}_{\mathsf{a}}} = m_{\mathsf{det}} \frac{N_T \Delta t}{4\pi L^2} \frac{\mathrm{d}\Phi_{\mathsf{a}}}{\mathrm{d}\mathcal{E}_{\mathsf{a}}} \sigma_{\mathsf{axioel}}^{\mathsf{det}}(\mathcal{E}_{\gamma}, \mathcal{E}_{\mathsf{a}})$$

decay processes

$$\frac{\mathrm{d}\mathcal{N}_{X}^{\mathrm{decay}}}{\mathrm{d}E_{a}} = \frac{\mathcal{A}\Delta t}{4\pi L^{2}} \frac{\mathrm{d}\Phi_{a}}{\mathrm{d}E_{a}} \mathcal{P}_{\mathrm{decay}}^{X}, \quad X = \{\mathrm{Prim., \ Compt.}\}$$

P_{decay}: probability that the decay occurs within the detector

$$\mathcal{P}_{\text{decay}}^{\mathsf{X}} = 1 - e^{-L_{\text{det}}E_a/|\vec{p}_a|\tau_{\mathsf{X}}}$$

• $\mathcal{A} = L_{det}^2$ denotes the detector transverse area.

[Dent et al. PRL. 124 (2020) 21, 211804]

Number of events

Sensitivities

Probing the $g_{a\gamma\gamma}$ coupling

Assumed detector specifications: current vs. future

P[GW]	\mathbf{PM}	TM	$m_{ m det}[m kg]$	L[m]	$L_{ m det}[m cm]$	bkg [1/keV/day/kg]	
4	$^{235}\mathrm{U}$	Ge	10	10	50	10–100	
8	$^{235}\mathrm{U}$	Xe	10^{3}	10	140	1-10	

Probing the g_{aee} coupling

Assumed detector specifications: current vs. future

P[GW]	\mathbf{PM}	тм	$m_{ m det}[m kg]$	L[m]	$L_{ m det}[m cm]$	${ m bkg} \; [1/{ m keV}/{ m day}/{ m kg}]$
4	$^{235}\mathrm{U}$	Ge	10	10	50	10–100
8	$^{235}\mathrm{U}$	Xe	10^{3}	10	140	1 - 10

Testing: environmental effects in Red Giants, unexplored regions

20 / 24

Probing the $g_{a\gamma\gamma}$ and g_{ann} couplings

Assumed detector specifications: current vs. future

P[GW]	W] PM TM		$m_{ m det}[m kg]$	L[m]	$L_{ m det}[m cm]$	bkg [1/keV/day/kg]	
4	$^{235}\mathrm{U}$	Ge	10	10	50	10–100	
8	$^{235}\mathrm{U}$	Xe	10^{3}	10	140	1–10	

Combined analyses

complementary laboratory probes especially in the regions currently tested only by astrophysics

Summary ALP production and detection mechanisms considered

	Scattering processes							
Pro	Coupling	Prod	Det					
Primakoff	$\gamma + N \leftrightarrow a + N$	$g_{a\gamma\gamma}$	~	~				
Compton-like	$\gamma + e^- \leftrightarrow a + e^-$	g_{aee}	~	~				
Nuclear de-excitation	$\gamma + N \leftrightarrow N^* \to a + N$	g_{ann}	~	~				
Axio-electric	$a+e^-+Z\to e^-+Z$	g_{aee}	×	~				
e-pair production in N	$a+N \rightarrow e^- + e^- + N$	g_{aee}	×	~				
e-pair production in e	$a+e^- \rightarrow e^- + e^+ + e^-$	g_{aee}	×	~				
Decay processes								
Pro	Coupling	Prod	Det					
γ -pair final state	$a \rightarrow \gamma + \gamma$	$g_{a\gamma\gamma}$	×	~				
e-pair final state	$a \rightarrow e^- + e^+$	g_{aee}	×	~				
<i>n</i> -pair final state	$a \rightarrow n + n$	g_{ann}	×	×				

Reactor experiments can be used as ALP factories:

- extend the physics reach of reactor neutrino programmes
- probe ALPs with $m_a \leq 10$ MeV utilizing their intense photon flux
- complementary information on ALPs in the low-energy frontier

Thank you for your attention !