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Microwave spectroscopy of the hyperfine structure in muonium: 
zero-field results and high-field preparation



Most stringent test of bound-state QED
Muonium HFS
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◦ Theoretical prediction ΔHFS = 4.463 302 872(511)(70)(2) GHz

ΔHFS =
16
3

hcR∞Z3α2 me
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)

−3
+ ΔQED + ΔQCD + ΔEW

◦ The precision of theoretical calculation is limited by the measurement of muon mass, 
which can be independently obtained with the spectroscopy of muonium 1S-2S. 

◦ We have stimulated updates on theoretical predictions [1,3] and phenomenological 
studies. Our goal is to improve the precision by a factor of 10.

[1] M.I. Eides, Phys. Lett. B 795, 113(2019). 
[3] S. G. Karshenboim and E. Y. Korzinin, Phys. Rev. A 103, 022805 (2021). 
[2] W. Liu et al., Phys. Rev. Lett. 82 711 (1999).

65 Hz237 Hz

◦ Experimental result ΔHFS = 4.463 302 776(51) GHz (11 ppb)

Latest theory papers :  

World record experiment : 

mμ/me = 206.768277(24)  (116 ppb)

mμ/me αth.

[1]

[2]



Two ways to measure the muonium HFS
High- and Zero-field Experiments
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◦ Direct measurement at a near-
zero magnetic field (ZF). 

◦ Simple and can be realized 
quickly as a phase-1 
experiment. Muonium 
polarization becomes half. 

◦ Zeeman-sublevels measurement 
in a high magnetic field (HF). 

◦ Careful treatment of magnetic 
field is necessary. High 
polarization, field focusing. 

◦ Determination of the magnetic 
moment ratio μμ/μp.
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Since the experiment was proposed
Project Timeline of MuSEUM
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2011 2013 2015 2017 2019

1st 2nd 3rd

New Beamline ConstructionR&D

R&DZF

HF

4th

RF Cavity Detector Magnet Field probe New beamline

2021

5th

1st?

◦ The final ZF experiment was conducted in May 2021. 

◦ We are preparing for the first HF experiment.

Proposal

6th



Experimental setup for a zero-field measurement
Outline of the Experiment
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For suppression of the stray field and geomagnetism

Magnetic Shield
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[1] S. Kanda, RIKEN Accelerator Progress Report Vol. 49 
(2017) 227. [2] publication is in preparation. 

◦ A precise controlled near-zero 
field was achieved by three-
layers of permalloy shield. 

◦ (a, b) Magnetic shield and 
fluxgate probe for field 
measurement [1]. 

◦ (c) Magnetic field inside the 
shield [2]. 

◦ The stray field was reduced by a 
factor of 1700 (from 100 μT to 
60 nT).

(c)



For zero-field experiments
Microwave Cavity
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◦ A cylindrical cavity made of copper 
with an inner diameter of 81.8 mm. 

◦ An inner axial length of the cavity 
was 230 mm so that muons could 
be sufficiently stopped in the gas 
target. 

◦ The microwave resonated in TM110 
mode with a quality factor of 5000 
at 4463.302 MHz. 

◦ (a) Photo of the cavity viewed 
from downstream. 

◦ (b) Calculated microwave field 
map.
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Low-density gas for muonium production
Gas Target
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◦ Krypton is an ideal target in 
terms of ionization energies. 

◦ A cylindrical aluminum vessel 
with almost no magnetism. 

◦ Efficient muon stopping with a 
low-density of 0.3 atm. 

◦ Semi-online measurement of 
impurity using a Q-Mass.  

◦ Precise gas density monitoring 
with 0.02% accuracy. 

◦ Modification for higher pressure 
(up to 4 atm) was done.

• S. Seo, H. Yamauchi (U. Tokyo), 
Y. Ueno (RIKEN), K.S. Tanaka (Tohoku U.), 
N. Kurosawa, P. Strasser (KEK).


• K. S. Tanaka, “Measurement of muonium 
hyperfine structure at J-PARC”, Ph.D 
Thesis, U. Tokyo (2016).



Positron counter and muon beam profile monitors
Particle Detectors
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◦ High-rate capable, 
segmented scintillation 
counter with SiPM readout 
for positron detection.  

◦ Extremely thin fiber 
hodoscope having a 
thickness of 300 μm for 
muon beam monitoring. 

◦ Three-dimensional 
reconstruction of muon 
stopping distribution 
using a CCD-based 
imager.

• S. Kanda, et al., PoS(PhotoDet16)039 
(2016).


• S. Kanda, RIKEN APR 48, 278 (2016).

• S. Kanda et al., KEK-MSL Prog. Rep., 

2014A0201(2014).



Continuous efforts since the experimental proposal
Zero-Field Highlights (2014-16)
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◦ First trial in 2014. 

◦ No resonance was observed. 
Small signal, severe background. 

◦ No beam delivery in 2015 due to 
the trouble with the mercury target. 

◦ Second trial in 2016. 

◦ Improvements in the microwave 
system and suppression of 
beam-derived background 
events. 

◦ First observation of the 
muonium HFS resonance with a 
pulsed muon beam. 

◦ S. Kanda Ph.D Thesis, U. Tokyo 
(2017). 

◦ S. Kanda, Proc. of Science, 
PoS(INPC2016)170 (2017) 1-6.

Experimental setup at 
J-PARC MLF MUSE D2 area

First resonance result

Experiment in 2014

Experiment in 2016



First Letter has been published in 2021
Zero-Field Highlights (2017)
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https://www.sciencedirect.com/science/article/pii/S0370269321000940

S. Kanda et al., Phys. Lett. B 815 (2021) 136154. 
Press release : https://www.kek.jp/wp-content/uploads/2021/04/PR20210416.pdf

Based on the results obtained in the third experiment in 2017.

https://www.kek.jp/wp-content/uploads/2021/04/PR20210416.pdf


Continuous efforts since the experimental proposal
Zero-Field Highlights (2017)
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◦ Third experiment in 2017. 

◦ Improvements in 
background suppression 
with a thick absorber to cut 
duct-streaming positrons. 

◦ Microwave power 
dependence of the signal 
height and curve width was 
studied. 

◦ The power was optimized in 
terms of resonance center 
determination. 

◦ A full-paper is being 
prepared.
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Continuous efforts since the experimental proposal
Zero-Field Highlights (2017)
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◦ Third experiment in 2017. 

◦ A new method to directly 
analyze the Rabi 
oscillation was 
developed.  

◦ Tolerant to time-varying 
systematic errors such as 
microwave power drift. 

◦ S. Nishimura, Ph.D 
Thesis, U. Tokyo (2018). 

◦ S. Nishimura et al., Phys. 
Rev. A 104, L020801 
(2021).

Δω: freq. detuning 
b: microwave power

Rabi-oscillation formula

Fitting results for different microwave frequencies



Continuous efforts since the experimental proposal
Zero-Field Highlights (2018)
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◦ Forth experiment in 2018. 

◦ A larger microwave cavity with 
resonance in TM220 mode. 

◦ The effect of muons 
stopping at the wall was 
reduced and the S/N was 
improved. 

◦ Gas pressure dependence was 
studiedᴕat a lower pressure than 
in the previous experiment. 

◦ “Old muonium” analysis was 
studied to improve precision. 

◦ Y. Ueno, Ph.D Thesis, U. Tokyo 
(2018). 

◦ A full-paper is being prepared.Old muonium analysis 2~6 μs Density dependence of the HFS



Continuous efforts since the experimental proposal
Zero-Field Highlights (2019)
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◦ Fifth experiment in 2019. 

◦ Compensation of the gas 
density shift by Kr/He gas 
mixture. 

◦ Kr indicates a negative 
shift by van der Waals 
interaction. 

◦ He indicates a positive 
shift due to Pauli exclusion. 

◦ Mixing at Kr:He~3:7 can 
cancel the shift. 

◦ S. Seo, talk at ICHEP2020.

Density dependence for different mixing ratios

ΔHFS (LAMPF1999)


Determination of the optimal mixing ratio



Kr/He mixing study at higher densities
The Last Zero-field Experiment
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◦ Sixth experiment in 2021. 

◦ The last experiment using the 
existing beamline (MUSE D2). 

◦ Kr/He gas mixture study at 
higher gas densities. 

◦ The gas chamber was 
modified to increase the 
pressure resistance to 4 atm. 

◦ The experiment was completed 
on May 29. 

◦ Detailed data analysis is in 
progress.
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Two ways to measure the muonium HFS
High- and Zero-field Experiments
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◦ Direct measurement at a near-
zero magnetic field (ZF). 

◦ Simple and can be realized 
quickly as a phase-1 
experiment. Muonium 
polarization becomes half. 

◦ Zeeman-sublevels measurement 
in a high magnetic field (HF). 

◦ Careful treatment of magnetic 
field is necessary. High 
polarization, field focusing. 

◦ Determination of the magnetic 
moment ratio μμ/μp.
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Since the experiment was proposed
Project Timeline of MuSEUM
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2011 2013 2015 2017 2019

1st 2nd 3rd

New Beamline ConstructionR&D

R&DZF

HF

4th

RF Cavity Detector Magnet Field probe New beamline

2021

5th

1st?

◦ The final ZF experiment was conducted in May 2021. 

◦ We are preparing for the first HF experiment.

Proposal

6th



Experimental setup for a high-field measurement
Outline of the Experiment
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H-Line
New Muon Beamline
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◦ A brand-new beamline delivering a 
high-intensity beam of 1x 108 μ+/s 
or more. 

◦ Dedicated for fundamental physics 
experiments that require long-term 
measurements. 

◦ The beamline is under construction.  

◦ A lot of progress in the last summer. 

◦ In the earliest case, the beam will be 
delivered starting in May 2022.

• T. Yamazaki, N. Kawamura, A. Toyoda (KEK).



A key element for the high-field experiment
Superconducting Magnet
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◦ A superconducting solenoid for a 
precise controlled magnetic field 
of 1.7 T. 

◦ A second-hand MRI magnet with 
an axial length of 2 m and a 
bore diameter of 925 mm. 

◦ Requirements for the field are: 

◦ 0.2 ppm (peak-to-peak) 
uniformity in a spheroidal 
volume with z=30 cm, r=10 cm. 

◦ ±0.1 ppm stability during 
measurement.

• K. Sasaki, M. Abe (KEK).



For highly uniform magnetic field
Passive Shimming
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K. Sasaki, M. Abe (KEK), Y. Higashi (U.Tokyo) 
M. Sugita, C. Oogane, H. Iinuma (Ibaraki U.)
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Three types of magnetometer
NMR Probes
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◦ Field camera 

◦ A 24-channel rotating NMR probe that maps 
magnetic fields in three dimensions. 

◦ Studies are underway for simultaneous multi-
channel readouts. 

◦ K. Sasaki (KEK), A. Yamaguchi(KEK->JASRI),  
T. Tanaka, K. Shimizu, F. Yoshizu (U. Tokyo), H. Tada (Nagoya U.) 

◦ Fixed probe 

◦ A compact probe to monitor magnetic field 
stability during experiment. 

◦ Standard probe 

◦ A high-precision NMR probe to calibrate others. 

◦ An accuracy of 15 ppb has been achieved. 

◦ Cross-calibration is underway in a joint research 
project between Japan and the US. 

◦ K. Sasaki (KEK), A. Yamaguchi (KEK->JASRI), T. Tanaka, S. Seo (U. Tokyo), 
P. Winter (ANL), D. Kawall (U. Mass.),  D. Flay (U.Mass->JLab)



R&D aiming at the highest precision

3He NMR Probe

24

◦ K. Sasaki, N. Sumi (KEK cryogenics),          
T. Ino (KEK neutron), T. Oku (JAEA), 
T. Okudaira (JAEA->Nagoya U.)

◦ A precision of proton NMR using 
water is limited by the 
uncertainty of the shielding effect 
(10 ppb). 

◦ Higher precision can be obtained 
by hyper-polarized 3He (0.1 ppb). 

◦ R&D for metastability exchange 
optical pumping (MEOP) is 
underway. 

◦ Collaboration of neutrons and 
muons in KEK.

Gas handling system for the neutron spin filter at J-PARC.

RF discharge of 3He in a cell with a 4-cm length.

1S

2S 2S

2P

F=1/2Excited states

RF discharge excitation Optical pumping
Metastability 

exchange collision

2S

1S



Resonator for spectroscopy
Microwave Cavity for High Field
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◦ What has been achieved so far 

→A cylindrical microwave cavity 
resonates at 1.95 GHz (TM110) 
and 2.65 GHz (TM210). 

→Resonance of both modes, high 
Q-value of 104, wide sweep 
range of 30 MHz or more, power 
feedback of 0.02% stability, 
pulse-by-pulse switching of 25 
Hz. 

◦ What we are currently working 
on 

→Temperature stabilization by 
water cooling, field 
measurement

• K.S. Tanaka (Tohoku U.), S. Seo,          
H. Yamauchi (U. Tokyo),Y. Ueno (RIKEN)



First full-paper for MuSEUM high-field R&D
Microwave Cavity Paper
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K. S. Tanaka et al., PTEP 2021;, ptab047.

https://academic.oup.com/ptep/advance-article/doi/10.1093/ptep/ptab047/6247771



Statistical and Systematic Uncertainties
Expected Precision
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Systematic uncertainty in zero-field 2017A.
◦ The statistical precision will 

reach 5 Hz (1.2 ppb) in 40 days 
of measurement.  

◦ Gas : 46 Hz → 3 Hz by using a 
new high-precision silicon gauge. 

◦ Power drift : 37 Hz → less than 1 
Hz by power and temperature 
control. 

◦ Pileup : 19 Hz → 2 Hz by 
improvement in segmentation 
and front-end electronics. 

◦ Impurity : 12 Hz → less than 1 
Hz by improvement in Q-Mass 
monitoring.

• S. Kanda et al., “New precise 
spectroscopy of the hyperfine 
structure in muonium with a 
high-intensity pulsed muon 
beam”, Phys. Lett. B 815, 
136154 (2021).



and future prospects
Summary
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◦MuSEUM collaboration is preparing for measurements 
of the muonium HFS under a high magnetic field. 

◦The experimental method was established by 
measurements at zero magnetic field. 

◦Cavity, target, detectors are ready for the DAY-1 
experiment at H-Line. 

◦The uniform magnetic field and NMR probe are also 
making steady progress. 

◦Approximately 10 years after the proposal submission, 
the experiment has finally come to fruition.



and pileup analysis
Decay Positron Time Spectrum
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[1] S. Kanda et al., Phys. Lett. B 815, 136154 (2021). 
[2] T. Ida and Y. Iwata, J. Appl. Cryst. 38, 426-432 (2005).

◦ An extended pulse-height analyzer 
(PHA) windowing model  [2] well fits 
data. 

◦ (top) Decay positron time spectrum 
and a result of exponential fitting. 

◦ (bottom) Pileup event loss as a function 
of the positron counting rate. 

◦ The systematic uncertainty arising from 
pulse pileup was estimated to be 19 Hz. 

◦ The uncertainty will be reduced to  2 Hz 
by improvement of the front-end 
electronics and detector segmentation.



Improvement in systematic uncertainty
Gas Density Measurement
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◦ A new silicon gauge (FLUKE RPM4) has 
been prepared for gas density 
monitoring. 

◦ Accuracy is better than 0.02% at 0.3 
atm (x10 improvement). 

◦ H. Yamauchi (U. Tokuyo). 

◦ Tested at zero-field experiment in 2021. 

◦ Answer to the question from the last 
CM: 

◦ Q: How is the pressure calibrated? 

◦ A: The pressure in the piston-cylinder 
was precisely measured using a mass 
standard.



Additional positron counter
Forward Detector
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◦ Increase of statistics and 
measurement of forward/
backward asymmetry to study 
systematic uncertainties. 

◦ A prototype unit was developed 
and tested at S-Line. 

◦ Design of a full-scale detector 
is underway. 

◦ H. Tada, Master Thesis, Nagoya 
University (2021). 

◦ H. Tada and S. Fukumura 
(Nagoya U.), S. Nishimura (KEK).

Time difference of coincidence hits (ns)

Time (ns)


