

Muonium HFS

Most stringent test of bound-state QED

• Theoretical prediction $\Delta_{HFS} = 4.463 302 872(511)(70)(2) \text{ GHz}^{\dagger}$

$$\Delta_{\text{HFS}} = \frac{16}{3} hc R_{\infty} Z^3 \alpha^2 \frac{m_e}{m_{\mu}} \Big(1 + \frac{m_e}{m_{\mu}} \Big)^{-3} + \Delta_{\text{QED}} + \Delta_{\text{QCD}} + \Delta_{\text{EW}}$$
 237 Hz 65 Hz

• Experimental result $\Delta_{HFS} = 4.463 302 776(51) \text{ GHz } (11 \text{ ppb})^{-12}$

$$m_{\mu}/m_e = 206.768277(24)$$
 (116 ppb)

- The precision of theoretical calculation is limited by the measurement of muon mass,
 which can be independently obtained with the spectroscopy of muonium 1S-2S.
- We have stimulated updates on theoretical predictions [1,3] and phenomenological studies. Our goal is to improve the precision by a factor of 10.

Latest theory papers: [1] M.I. Eides, Phys. Lett. B 795, 113(2019).

[3] S. G. Karshenboim and E. Y. Korzinin, Phys. Rev. A 103, 022805 (2021).

World record experiment: [2] W. Liu et al., Phys. Rev. Lett. 82 711 (1999).

2

High- and Zero-field Experiments

Two ways to measure the muonium HFS

Energy levels of muonium in a magnetic field.

- Direct measurement at a nearzero magnetic field (ZF).
 - Simple and can be realized quickly as a phase-1 experiment. Muonium polarization becomes half.
- Zeeman-sublevels measurement in a high magnetic field (HF).
 - Careful treatment of magnetic field is necessary. High polarization, field focusing.
 - Determination of the magnetic moment ratio μ_{μ}/μ_{p} .

Project Timeline of MuSEUM

Since the experiment was proposed

2011 2013 2015 2017 2019 2021

ZF R&D 1st 2nd 3rd 4th 5th 6th

HF Proposal

R&D

New Beamline Construction

1st?

RF Cavity

Detector

Magnet

Field probe

New beamline

- The final ZF experiment was conducted in May 2021.
- We are preparing for the first HF experiment.

Outline of the Experiment

Experimental setup for a zero-field measurement

Magnetic Shield

For suppression of the stray field and geomagnetism

- A precise controlled near-zero field was achieved by threelayers of permalloy shield.
- (a, b) Magnetic shield and fluxgate probe for field measurement [1].
- (c) Magnetic field inside the shield [2].
- The stray field was reduced by a factor of 1700 (from 100 μT to 60 nT).

[1] S. Kanda, RIKEN Accelerator Progress Report Vol. 49 (2017) 227. [2] publication is in preparation.

Microwave Cavity

For zero-field experiments

- A cylindrical cavity made of copper with an inner diameter of 81.8 mm.
- An inner axial length of the cavity was 230 mm so that muons could be sufficiently stopped in the gas target.
- The microwave resonated in TM₁₁₀ mode with a quality factor of 5000 at 4463.302 MHz.
- (a) Photo of the cavity viewed from downstream.
- (b) Calculated microwave field map.

Gas Target

Low-density gas for muonium production

- S. Seo, H. Yamauchi (U. Tokyo),
 Y. Ueno (RIKEN), K.S. Tanaka (Tohoku U.),
 N. Kurosawa, P. Strasser (KEK).
- K. S. Tanaka, "Measurement of muonium hyperfine structure at J-PARC", Ph.D Thesis, U. Tokyo (2016).

- Krypton is an ideal target in terms of ionization energies.
- A cylindrical aluminum vessel with almost no magnetism.
- Efficient muon stopping with a low-density of 0.3 atm.
- Semi-online measurement of impurity using a Q-Mass.
- Precise gas density monitoring with 0.02% accuracy.
- Modification for higher pressure (up to 4 atm) was done.

Particle Detectors

Positron counter and muon beam profile monitors

- S. Kanda, et al., PoS(PhotoDet16)039 (2016).
- S. Kanda, RIKEN APR 48, 278 (2016).
- S. Kanda et al., KEK-MSL Prog. Rep., 2014A0201(2014).

- High-rate capable, segmented scintillation counter with SiPM readout for positron detection.
- Extremely thin fiber hodoscope having a thickness of 300 μm for muon beam monitoring.
- Three-dimensional reconstruction of muon stopping distribution using a CCD-based imager.

Zero-Field Highlights (2014-16)

Continuous efforts since the experimental proposal

Experiment in 2014

Experiment in 2016

Experimental setup at J-PARC MLF MUSE D2 area

First resonance result

- o First trial in 2014.
 - No resonance was observed.
 Small signal, severe background.
- No beam delivery in 2015 due to the trouble with the mercury target.
- Second trial in 2016.
 - Improvements in the microwave system and suppression of beam-derived background events.
 - First observation of the muonium HFS resonance with a pulsed muon beam.
 - S. Kanda Ph.D Thesis, U. Tokyo (2017).
 - S. Kanda, Proc. of Science,
 PoS(INPC2016)170 (2017) 1-6.

Zero-Field Highlights (2017)

First Letter has been published in 2021

Based on the results obtained in the third experiment in 2017.

Physics Letters B 815 (2021) 136154

Contents lists available at ScienceDirect

Physics Letters B

www.elsevier.com/locate/physletb

New precise spectroscopy of the hyperfine structure in muonium with a high-intensity pulsed muon beam


```
S. Kanda <sup>a,*,1</sup>, Y. Fukao <sup>b,d,e</sup>, Y. Ikedo <sup>c,d</sup>, K. Ishida <sup>a</sup>, M. Iwasaki <sup>a</sup>, D. Kawall <sup>f</sup>, N. Kawamura <sup>c,d,e</sup>, K.M. Kojima <sup>c,d,e,2</sup>, N. Kurosawa <sup>g</sup>, Y. Matsuda <sup>h</sup>, T. Mibe <sup>b,d,e</sup>, Y. Miyake <sup>c,d,e</sup>, S. Nishimura <sup>c,d</sup>, N. Saito <sup>d,i</sup>, Y. Sato <sup>b</sup>, S. Seo <sup>a,h</sup>, K. Shimomura <sup>c,d,e</sup>, P. Strasser <sup>c,d,e</sup>, K.S. Tanaka <sup>j</sup>, T. Tanaka <sup>a,h</sup>, H.A. Torii <sup>i</sup>, A. Toyoda <sup>b,d,e</sup>, Y. Ueno <sup>a</sup>
```

- ^a RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
- b Institute of Particle and Nuclear Studies, KEK, 1-1 Oho, Tsukuba, Ibaraki, 305-0801, Japan
- ^c Institute of Materials Structure Science, KEK 1-1 Oho, Tsukuba, Ibaraki, 305-0801, Japan
- d Japan Proton Accelerator Research Complex (J-PARC), 2-4 Shirakata, Tokai, Ibaraki 319-1195, Japan
- e Graduate University of Advanced Studies (SOKENDAI), 1-1 Oho, Tsukuba, Ibaraki 305-0801, Japan
- University of Massachusetts Amherst, 1126 Lederle Graduate Research Tower, Amherst, MA 01003-9337, USA
 Cryogenic Science Center, KEK, 1-1 Oho, Tsukuba, Ibaraki, 305-0801, Japan
- h Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro, Tokyo 153-8902, Japan
- School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo, Tokyo 113-0033, Japan
- ^j Tohoku University, 6-3 Aoba, Sendai, Miyagi 980-8578, Japan

https://www.sciencedirect.com/science/article/pii/S0370269321000940

S. Kanda et al., Phys. Lett. B 815 (2021) 136154.

Press release: https://www.kek.jp/wp-content/uploads/2021/04/PR20210416.pdf

Zero-Field Highlights (2017)

Continuous efforts since the experimental proposal

Microwave power dependence of the resonance

- Third experiment in 2017.
 - Improvements in background suppression with a thick absorber to cut duct-streaming positrons.
 - Microwave power dependence of the signal height and curve width was studied.
 - The power was optimized in terms of resonance center determination.
 - A full-paper is being prepared.

Zero-Field Highlights (2017)

Continuous efforts since the experimental proposal

Fitting results for different microwave frequencies

Rabi-oscillation formula

$$f\left(t;\;A,\;|b|,\;\Delta\omega\right) = A\;\sum N_i \left(\frac{G_i^+}{\Gamma_i}\cos G_i^- t + \frac{G_i^-}{\Gamma_i}\cos G_i^+ t - 1\right)$$

$$G^{\pm} = \frac{\Gamma \pm \Delta\omega}{2},$$

$$\Gamma = \sqrt{\left(\Delta\omega\right)^2 + 8\left|b\right|^2},\;\;\Delta\omega:\; \text{freq. detuning}$$

$$b:\; \text{microwave power}$$

- Third experiment in 2017.
 - A new method to directly analyze the Rabi oscillation was developed.
 - Tolerant to time-varying systematic errors such as microwave power drift.
 - S. Nishimura, Ph.D
 Thesis, U. Tokyo (2018).
 - S. Nishimura et al., Phys. Rev. A 104, L020801 (2021).

Zero-Field Highlights (2018)

Continuous efforts since the experimental proposal

Old muonium analysis 2~6 µs

Density dependence of the HFS

- Forth experiment in 2018.
 - A larger microwave cavity with resonance in TM220 mode.
 - The effect of muons stopping at the wall was reduced and the S/N was improved.
 - Gas pressure dependence was studied at a lower pressure than in the previous experiment.
 - "Old muonium" analysis was studied to improve precision.
 - Y. Ueno, Ph.D Thesis, U. Tokyo(2018).
 - A full-paper is being prepared.

Zero-Field Highlights (2019)

Continuous efforts since the experimental proposal

Density dependence for different mixing ratios

Determination of the optimal mixing ratio

- Fifth experiment in 2019.
 - Compensation of the gas density shift by Kr/He gas mixture.
 - Kr indicates a negative shift by van der Waals interaction.
 - He indicates a positive shift due to Pauli exclusion.
 - Mixing at Kr:He~3:7 can cancel the shift.
 - S. Seo, talk at ICHEP2020.

The Last Zero-field Experiment

Kr/He mixing study at higher densities

- Sixth experiment in 2021.
 - The last experiment using the existing beamline (MUSE D2).
 - Kr/He gas mixture study at higher gas densities.
 - The gas chamber was modified to increase the pressure resistance to 4 atm.
 - The experiment was completed on May 29.
 - Detailed data analysis is in progress.

High- and Zero-field Experiments

Two ways to measure the muonium HFS

$$\frac{\mu_{\mu}}{\mu_{p}} = \frac{4\nu_{12}\nu_{34} + \nu_{p}\mu_{e}/\mu_{p}(\nu_{34} - \nu_{12})}{\nu_{p}[\nu_{p}\mu_{e}/\mu_{p} - (\nu_{34} - \nu_{12})]}$$

- Direct measurement at a nearzero magnetic field (ZF).
 - Simple and can be realized quickly as a phase-1 experiment. Muonium polarization becomes half.
- Zeeman-sublevels measurement in a high magnetic field (HF).
 - Careful treatment of magnetic field is necessary. High polarization, field focusing.
 - Determination of the magnetic moment ratio μ_{μ}/μ_{p} .

Project Timeline of MuSEUM

Since the experiment was proposed

2011 2013 2015 2017 2019 2021

ZF R&D 1st 2nd 3rd 4th 5th 6th

HF Proposal

R&D

New Beamline Construction

1st?

RF Cavity

Detector

Magnet

Field probe

New beamline

- The final ZF experiment was conducted in May 2021.
- We are preparing for the first HF experiment.

Outline of the Experiment

Experimental setup for a high-field measurement

New Muon Beamline

H-Line

- A brand-new beamline delivering a high-intensity beam of $1 \times 10^8 \ \mu$ +/s or more.
- Dedicated for fundamental physics experiments that require long-term measurements.
- The beamline is under construction.
- A lot of progress in the last summer.
- In the earliest case, the beam will be delivered starting in May 2022.
 - T. Yamazaki, N. Kawamura, A. Toyoda (KEK).

Superconducting Magnet

A key element for the high-field experiment

K. Sasaki, M. Abe (KEK).

- A superconducting solenoid for a precise controlled magnetic field of 1.7 T.
 - A second-hand MRI magnet with an axial length of 2 m and a bore diameter of 925 mm.
- Requirements for the field are:
 - 0.2 ppm (peak-to-peak)
 uniformity in a spheroidal
 volume with z=30 cm, r=10 cm.
 - ±0.1 ppm stability during measurement.

Passive Shimming

For highly uniform magnetic field

Iron shim plates 341 ppm (p-p)

Nickel films 0.28 ppm (p-p)

Magnetic putty 0.17 ppm (p-p)

K. Sasaki, M. Abe (KEK), Y. Higashi (U.Tokyo) M. Sugita, C. Oogane, H. Iinuma (Ibaraki U.)

NMR Probes

Three types of magnetometer

Field camera

- A 24-channel rotating NMR probe that maps magnetic fields in three dimensions.
- Studies are underway for simultaneous multichannel readouts.
- K. Sasaki (KEK), A. Yamaguchi(KEK->JASRI),
 T. Tanaka, K. Shimizu, F. Yoshizu (U. Tokyo), H. Tada (Nagoya U.)

Fixed probe

 A compact probe to monitor magnetic field stability during experiment.

Standard probe

- A high-precision NMR probe to calibrate others.
- An accuracy of 15 ppb has been achieved.
- Cross-calibration is underway in a joint research project between Japan and the US.
- K. Sasaki (KEK), A. Yamaguchi (KEK->JASRI), T. Tanaka, S. Seo (U. Tokyo),
 P. Winter (ANL), D. Kawall (U. Mass.), D. Flay (U.Mass->JLab)

³He NMR Probe

R&D aiming at the highest precision

- A precision of proton NMR using water is limited by the uncertainty of the shielding effect (10 ppb).
- Higher precision can be obtained by hyper-polarized ³He (0.1 ppb).
- R&D for metastability exchange optical pumping (MEOP) is underway.
- Collaboration of neutrons and muons in KEK.
 - K. Sasaki, N. Sumi (KEK cryogenics),
 T. Ino (KEK neutron), T. Oku (JAEA),
 T. Okudaira (JAEA->Nagoya U.)

Gas handling system for the neutron spin filter at J-PARC.

RF discharge of ³He in a cell with a 4-cm length.

Microwave Cavity for High Field

Resonator for spectroscopy

K.S. Tanaka (Tohoku U.), S. Seo,
 H. Yamauchi (U. Tokyo), Y. Ueno (RIKEN)

- What has been achieved so far
- \rightarrow A cylindrical microwave cavity resonates at 1.95 GHz (TM₁₁₀) and 2.65 GHz (TM₂₁₀).
- →Resonance of both modes, high Q-value of 10⁴, wide sweep range of 30 MHz or more, power feedback of 0.02% stability, pulse-by-pulse switching of 25 Hz.
- What we are currently working on
- →Temperature stabilization by water cooling, field measurement

Microwave Cavity Paper

First full-paper for MuSEUM high-field R&D

PTEP

Prog. Theor. Exp. Phys. **2015**, 00000 (20 pages) DOI: 10.1093/ptep/0000000000

Development of microwave cavities for measurement of muonium hyperfine structure at J-PARC

K.S. Tanaka^{1,4}, M. Iwasaki², O. Kamigaito², S. Kanda^{3,6,7}, N. Kawamura^{3,6,7}, Y. Matsuda⁴, T. Mibe^{5,6,7}, S. Nishimura^{3,6}, N. Saito^{6,8}, N. Sakamoto², S. Seo^{2,4}, K. Shimomura^{3,6,7}, P. Strasser^{3,6,7}, K. Suda², T. Tanaka^{2,4}, H.A. Torii^{4,8}, A. Toyoda^{5,6,7}, Y. Ueno^{2,4}, and M. Yoshida^{7,9}

K. S. Tanaka et al., PTEP 2021;, ptab047.

https://academic.oup.com/ptep/advance-article/doi/10.1093/ptep/ptab047/6247771

¹Cyclotron and Radioisotope Center, Tohoku University, 6-3 Aoba, Aramaki, Aoba-ku, Sendai, Miyagi 980-8578, Japan

²RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan

³Institute of Materials Structure Science, KEK, 1-1 Oho, Tsukuba, Ibaraki 305-0801, Japan

⁴ Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo 153-8902, Japan

⁵Institute of Particle and Nuclear Studies, KEK, 1-1 Oho, Tsukuba, Ibaraki 305-0801, Japan

⁶ Japan Proton Accelerator Research Complex (J-PARC), 2-4 Tokai, Ibaraki 319-1195, Japan

⁷ Graduate University of Advanced Studies (SOKENDAI), 1-1 Oho, Tsukuba, Ibaraki 305-0801, Japan

⁸School of Science, The University of Tokyo, Bunkyo, Tokyo 113-0033, Japan ⁹Accelerator Laboratory, KEK, 1-1 Oho, Tsukuba, Ibaraki 305-0801, Japan

Expected Precision

Statistical and Systematic Uncertainties

Systematic uncertainty in zero-field 2017A.

Source	Contribution (Hz)
Gas density measurement	46
Microwave power drift	37
Detector pileup	19
Gas temperature fluctuation	6
Static magnetic field	negligible
Gas impurity buildup	12
Muon beam intensity	negligible
Muon beam profile	negligible
Total	63

• S. Kanda et al., "New precise spectroscopy of the hyperfine structure in muonium with a high-intensity pulsed muon beam", Phys. Lett. B 815, 136154 (2021).

- The statistical precision will reach 5 Hz (1.2 ppb) in 40 days of measurement.
- Gas: 46 Hz → 3 Hz by using a new high-precision silicon gauge.
- Power drift: 37 Hz → less than 1 Hz by power and temperature control.
- Pileup: 19 Hz → 2 Hz by improvement in segmentation and front-end electronics.
- Impurity: 12 Hz → less than 1 Hz by improvement in Q-Mass monitoring.

Summary

and future prospects

- MuSEUM collaboration is preparing for measurements of the muonium HFS under a high magnetic field.
 - The experimental method was established by measurements at zero magnetic field.
 - Cavity, target, detectors are ready for the DAY-1 experiment at H-Line.
 - The uniform magnetic field and NMR probe are also making steady progress.
- Approximately 10 years after the proposal submission, the experiment has finally come to fruition.

Decay Positron Time Spectrum

and pileup analysis

- An extended pulse-height analyzer (PHA) windowing model [2] well fits data.
- (top) Decay positron time spectrum and a result of exponential fitting.
- (bottom) Pileup event loss as a function of the positron counting rate.
- The systematic uncertainty arising from pulse pileup was estimated to be 19 Hz.
- The uncertainty will be reduced to 2 Hz by improvement of the front-end electronics and detector segmentation.
 - [1] S. Kanda et al., Phys. Lett. B 815, 136154 (2021).
 - [2] T. Ida and Y. Iwata, J. Appl. Cryst. 38, 426-432 (2005).

Gas Density Measurement

Improvement in systematic uncertainty

- A new silicon gauge (FLUKE RPM4) has been prepared for gas density monitoring.
- Accuracy is better than 0.02% at 0.3 atm (x10 improvement).
 - H. Yamauchi (U. Tokuyo).
- Tested at zero-field experiment in 2021.
- Answer to the question from the last CM:
 - O: How is the pressure calibrated?
 - A: The pressure in the piston-cylinder was precisely measured using a mass standard.

Forward Detector

Additional positron counter

Time difference of coincidence hits (ns)

- Increase of statistics and measurement of forward/ backward asymmetry to study systematic uncertainties.
- A prototype unit was developed and tested at S-Line.
 - Design of a full-scale detector is underway.
- H. Tada, Master Thesis, Nagoya University (2021).
- H. Tada and S. Fukumura
 (Nagoya U.), S. Nishimura (KEK).