Mu2e-II: The Mu2e Experiment in the PIP-II Era

E. Craig Dukes (for the Mu2e-II Collaboration) University of Virginia

NuFact 2021 September 8, 2021

Elementary Particle Physics University of Virginia

Frontier Physics Group University of Virginia

Why We Think the Standard Model is Incomplete

- Quantum theory of gravity
- Origin of neutrino mass hierarchy
- Solution to hierarchy problem ⇒ supersymmetry, something else?

Cosmology

Theory

- Matter-antimatter asymmetry in the universe
- Dark matter
- Dark energy

- Experiment
- Neutrino mass ⇒ first evidence of physics beyond the standard model
 - Occasional hints appear, and often disappear: muon g-2, B⁺ → l⁺l⁻, NuTeV, CP phases in B_s mixing, D_s decay rates, W+jets, Top AFB

No Lack of Theoretical Ideas, but Little Guidance

Why Search for Charged Lepton Flavor Violation?

 q_i

X;0

Lepton flavor conservation

accidental

in the extended Standard Model

 $\mu^- N \rightarrow e^- N$

- In Standard Model not there ⇒ neutrino mass discovery implies an unobservable 10⁻⁵² rate
- Hence, any signal unambiguous evidence of new physics
- Exquisite sensitivities can be obtained experimentally
 - ⇒ sensitivities that allow favored beyond-the-standard-model theories to be tested

New heavy neutrino

Why Muon-to-Electron Conversion?

Probes of different SUSY and non-SUSY BSM models

Altmannshofer, Buras, et al., NPB 830, 17 (2010)

	AC	RVV2	AKM	δLL	FBMSSM	LHT	RS
$D^0 - \overline{D}^0$	***	*	*	*	*	***	?
ϵ_K	*	***	***	*	*	**	***
$S_{\psi\phi}$	***	***	***	*	*	***	***
$S_{\phi K_S}$	***	**	*	***	***	*	?
$A_{\rm CP}\left(B \to X_s \gamma\right)$	*	*	*	***	***	*	?
$A_{7,8}(B \to K^* \mu^+ \mu^-)$	*	*	*	***	***	**	?
$A_9(B\to K^*\mu^+\mu^-)$	*	*	*	*	*	*	?
$B \to K^{(*)} \nu \bar{\nu}$	*	*	*	*	*	*	*
$B_s \to \mu^+ \mu^-$	***	***	***	***	***	*	*
$K^+ \to \pi^+ \nu \bar{\nu}$	*	*	*	*	*	***	***
$K_L \to \pi^0 \nu \bar{\nu}$	*	*	*	*	*	***	***
$\mu \to e \gamma$	***	***	***	***	***	***	***
$\tau \rightarrow \mu \gamma$	***	***	*	***	***	***	***
$\mu + N \rightarrow e + N$	***	***	***	***	***	***	***
d_n	***	***	***	**	***	*	***
d_e	***	***	**	*	***	*	***
$(g-2)_{\mu}$	***	***	**	***	***	*	?

Table 8: "DNA" of flavour physics effects for the most interesting observables in a selection of SUSY and non-SUSY models $\bigstar \bigstar \bigstar$ signals large effects, $\bigstar \bigstar$ visible but small effects and \bigstar implies that the given model does not predict sizable effects in that observable.

(Incomplete) History of CLFV Searches

History of Muon CLFV Searches

Future Searches of Muon CLFV

Mu2e-II Goal: O(10⁻¹⁸) Single Event Sensitivity

How to Search for $\mu^- N \rightarrow e^- N$

- Stop muon in atom
- Muon rapidly (10⁻¹³s) cascades to 1S state
- Circles the nucleus for up to ~2 μ s (in Al τ = 864 ns)
- Two things most likely happen:
 - 1. muon is captured by the nucleus:

 $\mu^{-}N_{A,Z} \rightarrow \nu_{\mu}N_{A,Z}$

How to Search for μ -N \rightarrow e-N

- Stop muon in atom ullet
- Muon rapidly (10⁻¹⁶s) cascades to 1S state ullet
- Circles the nucleus for up to $\sim 2 \mu s$ ullet
- Two things most likely happen: ullet1. muon is captured by the nucleus:
 - 2. muon decays in orbit:

Mu2e Searching for a Third Process: $\mu^-N \rightarrow e^-N$

The muon turns into an electron μ -N \rightarrow e-N leaving the nucleus in ground state

- signature single delayed (τ = 864 ns in Al) isolated electron
- Electron energy given by the rest mass of the muon minus the nucleus recoil energy and the binding energy:

 $E_{e} = m_{\mu} - E_{NR} - E_{b} \sim 104.97 \text{ MeV}$ (Al)

Mu2e Apparatus

Craig Dukes / Virginia

PIP-II: Fermilab Proton Improvement Plan II

- Present Fermilab Linac replaced with 800 MeV Continuous Wave SRF Linac
- High intensity H⁻ beam: up to $4x10^8$ p/bunch, 162.5 MHz bunch frequency
- Design driven by needs of the Fermilab neutrino program
 - However: LBNF/DUNE only needs ~1% of the available beam a fraction of the time, limited by (the increased) Booster rep rate of 20 Hz
- Construction has begun; scheduled to end in 2027

Mu2e-II: Goal of Mu2e in the PIP-II Era

We wish to seize the opportunity provided by upgrades of the Fermilab accelerator complex being built for DUNE to:

- Increase sensitivity over Mu2e by 10X while keeping backgrounds < 1 event
- This is to be done by:
 - ~3X increase in muon beam intensity (through ~30X p beam intensity)
 - ~3X increase in live time (through a better duty factor)

Advantages:

- Higher duty factor (~3X)
- More intense muon beam (~3X)
- Beam structure can be tuned to the needs of the Mu2e target choice
- Narrower beam pulse
- Lower energy eliminates anti-proton background
- Challenges:
- Getting the lower-energy beam on the production target
- Dealing with higher rates
- Dealing with higher radiation levels

 $O(10^{-18})$ SES

PIP-II: Getting the Proton Beam to Mu2e

- Fast dipole magnet (20 µs) switches beam between Booster and Mu2e-II + other potential experiments/beamlines
- Not in PIP-II baseline: an ongoing dialog with PIP-II designers heading off potential show-stoppers

Mu2e-II: Proton Beam Splitting

- Mu2e would take ½ of full bunch rate: 162.5 MHz
- Two other beam lines could be selected with an RF beam separator

Mu2e-II: Beam Structure

- PIP-II allows programmable proton pulse patterns
- Need a burst separation of ~1700 ns (with Al target)
- Burst: 8 pulses (1.4x10⁸ p each), each separated by 12.3 ns (81.25 MHz)
- Burst train: Burst followed by gap of 1698 ns, then another burst of 8 pulses, this repeated for ~45 ms of beam every 50 ms
- 90% duty factor

Production Solenoid: Challenges

Radiation and heat load:

- Some coils will have been subjected to ~7 MGy and become activated
- Insulation damage (conventional epoxy limit ~10 MGy)
- Degradation of Al stabilizer (RRR)
- Large heat load: power density increases by 10X
 - present magnet already pushed to limit
 - ΔT in coil goes from 0.25 K to 2.5 K: quench temperature is 6.6 K 2.5 K = 4.1 K. With a thermal margin of 1.5 K the magnet temperature of 2.6 K is close to the lambda point (2.17 K)

Beam transport with lower momentum beam

- 0.800 GeV rather than 8 GeV
- How do we steer it onto the target, dump, and extinction monitor?

Finding a target to handle 76 kW beam power

Production Solenoid: Solutions

Use the present Production Solenoid

- Upgrade the cryo-system
- Replace bronze Heat/Radiation shield (HRS) with W to reduce power density by 2.5X → note, may not be viable
- Will have to operate it at a lower temperature and/or with lower margin

Replace or rebuild much of the Production Solenoid

- Some parts vacuum vessel, thermo-shield, cold-mass supports reused
- New cable and coils would have to be made:
 - Cable-in-Conduit Conductor
 - Direct cooling increases heat load capability
 - Technically challenging, but being used (ITER)
 - Internally-cooled Al-stabilized cable
 - Non superconducting magnet:
 - Room temp resistive coil (replace HRS): ~ 5 MW
 - Cyro-cooled resistive coil (replace HRS): ~ 1 MW

Production Solenoid: Target Solutions

- Mu2e: ~1 kW in passively cooled W target
- Mu2e-II: ~15 kW in target
 - DPA >> 1

New target design needed

Rotating Elements

Pro: survives radiation Con: large profile

Fixed Granular w Gas Cooling

Pro: small profile
Con: peak DPA > 300/yr

Pro: modest profile Con: technically challenging

Favored Target

Conveyor Tube w Balls

Production Solenoid: Conveyor Target

Exploring different target materials

- W/WC balls: 9 ۲
- SiC balls: 19 \bullet
- C balls: 28 \bullet

Max temperatures well below melting points

1

1.4E+03

1.2E+03

1.0E+03

8.0E+02

6.0E+02

4.0E+02

Mu2e-II: Stopping Target

Al is ideal first target

- High endpoint energy
 - muons captured on other (higher Z) detector material not a background
- Capture daughter more massif m_{z-1} > m_z
 - keeps max. energy of radiative capture muons below signal electrons
- Long lifetime
 - keeps proton blast separated from live window

Would continue with this target if Mu2e sees nothing

Mu2e-II: Other Stopping Target Choices

If Mu2e observes conversion, a different target would be ideal in order to narrow down the physics process

The opportunities and challenges of the following targets are being explored:

Lithium

• Low discrimination

Sulpher

• Advantages for e⁺ channel

Titanium

• Multiple isotopes

Au/Pb

- Good discrimination
- Short lifetime \rightarrow low rate

Keeping Backgrounds in Check

Extinction

Needed to remove out of time protons that can produce conversion-like electrons from captured pions and from electrons that scatter in the stopping target Out-of-time beam sent to downstream collimator Magnet

- Mu2e:
 - Need 10⁻¹⁰ reduction (out of bunch/in bunch)
 - 10⁻⁵ from bunch formation in Recycler/Delivery RIng
 - 10⁻⁷ from AC Dipole extinction system
 - 100X safety factor
- Mu2e-II:
 - Need 10⁻¹¹ reduction
 - 10⁻⁴ (at least) from chopper
 - Need additional 10⁻⁹ from extinction system to get same safety factor
 - Should be easy: lower energy, smaller emittance beam, etc

This looks very feasible

Tracker: Would the Mu2e-II Tracker Work?

- 21,000: 5 mm diam straws Ar:CO₂
- 15 µm Mylar thick
- metalized inside/outside

Toy MC Study:

Mu2e Rate and Background

Mu2e-II Rate and Background Mu2e Tracker: 15 μm straws Mu2e-II Rate and Background Tracker w ½ resolution

No! It must be replaced as background would exceed 1 event

- DIO background moves to the right (into signal region)
- Signal region needs to be narrowed, DIO moved to left, by reducing material

Tracker: Challenges & Solutions

Challenge: increased radiation load

Radiation-hard front-end electronics: ASICs, DC-DC converters, optical readout

Challenge: ~4X Increase in bunch intensity

- Only produces a 5% reduction in momentum resolution and reconstruction efficiency
- Current design and software is capable of this

Challenge: Lower mass to meet momentum resolution goal

- Solutions:
 - Thinner straws
 - Lower mass gas/sense wires
 - Completely different technology

Tracker: Straw Challenges

 Straw thickness: 15 μm must be reduced to at least ~8 μm

- Fabricating issues: butt vs overlap seams, winding schemes, etc
- Sustaining 1 atm pressure difference a challenge (significantly higher Hoop Stress)
- Increased leak rate (Mu2e has a ~15% straw failure rate)
- Mechanical properties: less strength to keep straw straight
- Aging: large additional charge of ~10 C/cm (Mu2e: ~1 C/cm)

Material Budget for Mu2e Straws

Tracker: Straw Solutions

- Fermilab has LDRD team (Brendan Casey et al) researching thinner straws
- Fabricating straws with 3-8 μm wall thickness
- Gases:
 - Can the pressure be less than 1 atm?
 - Reduces leak rate (CO₂) through straws
 - Reduces Hoop Stress
 - Slight reduction in mass
- Note: thinner walls reduce charge load (largely caused by photon conversions in walls)

Tracker Solutions: Straw Alternatives

Drift chamber similar to MEG-II

Other alternatives: Light Si, Micro Pattern Gas Detector, radial TPC

Cosmic Ray Veto (CRV): Mu2e

- About 1 fake event/day from cosmic-ray muons
- Hence need ~99.99% efficiency in an intense radiation environment
- Surround Detector Solenoid by 4 layers of scintillator read out by waveshifting fibers, and silicon photomultipliers

Details:

- 5,344 counters
- Area: 335 m²
- 10,688 fibers
- 19,392 SiPMs

Cosmic Ray Veto: Challenges

Live time: ~3X higher (due to larger duty factor)

Directly increases cosmic-ray induced background by same amount →
 Cosmic-ray induced background scales as live time, not beam intensity!

Light yield degradation: expected scintillator light yield will be significantly less

• Scintillator aging directly impacts efficiency in detecting cosmic-ray muons

With present CRV expect ~4 background events in a 3-year run of 4.56E7 s beginning in 2030 due to the live time increase and effects of light yield decline

Noise rates: expect ~3X higher noise rates from neutrons, gammas, etc. coming from the production target, stopping target, collimators, and muon beam stop

- Rates in some sectors of the CRV are already at the limit of what the electronics can handle
- Radiation damage to photodetectors and front-end electronics close to becoming an issue
 - Mu2e max non-ionizing: 1 x 10¹⁰ n/cm² for Front-end electronics, 1 x 10¹¹ n/cm² for SiPMs

CRV: Improving Muon Veto Efficiency

Overall efficiency needs to be improved by ~3X do to longer livetime Note: 20% of CRV vetoes 80% of background-creating muons

Most non-vetoed CR muons come at nearly vertical angles, and traverse gaps between counters

Replace rectangular counter with triangular design to avoid vertical gaps

- Increase light yield: New counters reset light-yield decline; use new, higher efficiency SiPMs; pot fibers in their channels
- Other solutions: employ high-rate gas detectors in critical sectors

Cosmic Ray Veto: Handling 3X Muon Intensity

Problems:

- Front-end Electronics throughput at its maximum limit
- Radiation damage becoming an issue, particularly for SiPMs
- Deadtime, presently about 5-10%, will become uncomfortably large
- Larger duty factor reduces 'off-spill' time used for data transmission, calibration, etc

Solutions:

- Note: only about 10% of the CRV is adversely affected: increased rates not a problem for the remainder of the CRV
- Better shielding: Boron and barite loaded concrete
- Smaller counters: Triangular counters
- Non-scintillator designs: employ high-rate gas detectors in critical sectors

Calorimeter

Needed for:

- Seeding track finder
- Particle ID: e vs μ
- Trigger
- Two disks separated by $\frac{1}{2}\,\lambda$ of helix
- 2 x 674 un-doped CsI crystals: 34x34x200 mm³ (10X₀)
- Dual UV-extended SiPM readout
- Conversion electron resolution: σ_{E}/E O(5%)
- Timing: $\sigma_t < 0.50$ ns

Calorimeter: Problems and Solutions

Problems:

- Not sufficiently rad hard for Mu2e-II: ~10 kGy/yr IR; ~10¹³ n/cm²
- Not fast enough: 30 ns

Solutions:

- Fast, rad hard crystals:
 - BaF₂ with suppressed slow component readout
 - BaF₂ doped with Y to suppresss slow component

Crystal	Csl	BaF ₂	BaF ₂ (Y)
Density (g/cm3)	4.51	4.89	4.89
Hygroscopicity	Slight	None	None
λ _{peak} (nm)	420	300	300
	310	220	220
Light Yield (% NaI(Tl))	3.6	42	1.7
	1.1	4.8	4.8
Decay Time (ns)	30	600	600
	6	0.5	0.5

Craig Dukes / Virginia

Calorimeter: Fast Readout of BaF₂

Craig Dukes / Virginia

Summary

- Muon-to-electron conversion provides one of the most sensitive probes of new physics
- PIP-II has the potential to allow an improvement of 10X over the expected Mu2e sensitivity through a more intense muon beam and better duty factor
- The PIP-II beam provides several other advantages over the present booster beam
- However, there are significant challenges:
 - Handling the lower energy proton beam, 0.800 GeV vs 8 GeV
 - Handling the higher rates
- Significant parts of the apparatus will have to be replaced
- Opportunities of achieving a SES O(10⁻¹⁸) far outweigh the challenges
- A small, enthusiastic team is working on Mu2e-II, the immediate goal is to produce a strong conceptual design for the US Snowmass-2022 process, which is mapping out a USA plan for the next generation of experiments and facilities
- If you are interested in joining our team, there are many opportunities

Thanks to my many colleagues on Mu2e-II and Mu2e!

Backup Slides

PIP-II Schedule

General requirements for Mu2e PS

- Magnetic:
 - Nominal peak field on the axis 4.6 T;
 - Maximum peak field on axis 5.0 T;
 - Axial gradient -1 T/m;
 - Gradient uniformity ±5 %.
- Electrical:
 - Operating margins: ≥ 30 % in I_c, ≥ 1.5 K in T_c;
 - Operating current 9÷10 kA;
 - Peak quench temperature ≤ 130 K;
 - − Voltage across terminals \leq 600 V.
- Structural:
 - Withstand forces at all conditions while part of the system or stand-alone;
 - Cryostated magnet weight ≤ 60 tons;
 - Compliance with applicable structural codes.

- Cryogenic:
 - Cooling agent: LHe at 4.7 K;
 - Total heat flow to LHe ≤ 100 W;
 - Cryostat ID 1.5 m;
 - Conduction cooling.
- Radiation:
 - Absorbed dose ≤ 7 MGy total;
 - Minimum RRR of Al stabilizer in the operating cycle ≥ 100.

CRV: Reducing Neutron Induced Background

Estimate 0.007 background events per 1E6 seconds: 0.175 events in a run of 2.5E7 live seconds

- Increase shielding above detector pit to reduce number of cosmic-ray neutrons
 - This is feasible and sufficient

- Find a way to place a veto around the stopping target region
 - Extremely challenging high rates, low mass (including cable plant), operation in vacuum
 - Could replace much of the present Mu2e CRV

Mu2e-II: Other Stopping Target Designs

Can we increase the stopping fraction; lower the electron escape mass?

Concentric Cylinders

Foils & Frame

Hexagonal Cylinders

No significant improvement in stopping fraction: Present design close to optimal

Craig Dukes / Virginia