The anomalous magnetic moment of the muon in the Standard Model

Peter Stoffer

Physik-Institut, University of Zurich and Paul Scherrer Institut

September 9, 2021

NuFact 2021: The 22nd International Workshop on Neutrinos from Accelerators

1

Outline

- 1 Introduction
- Standard Model prediction for the muon g-2
- 3 Hadronic vacuum polarization
- 4 Hadronic light-by-light scattering
- 5 Summary and outlook

Overview

- 1 Introduction
- Standard Model prediction for the muon g-2
- 3 Hadronic vacuum polarization
- 4 Hadronic light-by-light scattering
- 5 Summary and outlook

Magnetic moment

relation of spin and magnetic moment of a lepton:

$$\vec{\mu}_{\ell} = g_{\ell} \frac{e}{2m_{\ell}} \vec{s}$$

 g_{ℓ} : Landé factor, gyromagnetic ratio

- Dirac's prediction: $g_e = 2$
- anomalous magnetic moment: $a_{\ell} = (g_{\ell} 2)/2$
- helped to establish QED and QFT as the framework for elementary particle physics
- today: probing not only QED but entire SM

Electron vs. muon magnetic moments

influence of heavier virtual particles of mass M scales as

$$\frac{\Delta a_\ell}{a_\ell} \propto \frac{m_\ell^2}{M^2}$$

- $(m_{\mu}/m_e)^2 \approx 4 \times 10^4 \Rightarrow$ muon is much more sensitive to new physics, but also to EW and hadronic contributions
- a_{τ} experimentally not yet known precisely enough

recent and future experimental progress:

- FNAL will improve precision further: factor of 4 wrt E821
- theory still needs to reduce SM uncertainty!

Photo: Glukicov (License: CC-BY-SA-4.0)

muon g-2 discrepancy SM: white paper Brookhaven E821 3.7σ $-400 \quad -300 \quad -200 \quad -100 \quad 0 \quad 100 \quad 200 \quad 300 \quad 400$

 $10^{11} \times (a_{\mu} - a_{\mu}^{SM})$

recent and future experimental progress:

- FNAL will improve precision further: factor of 4 wrt E821
- theory still needs to reduce SM uncertainty!

Photo: Glukicov (License: CC-BY-SA-4.0)

muon g-2 discrepancy SM: white paper Brookhaven E821 FNAL E989 experimental average 4.2σ

 $10^{11} \times (a_{\mu} - a_{\mu}^{SM})$

recent and future experimental progress:

- FNAL will improve precision further: factor of 4 wrt E821
- theory still needs to reduce SM uncertainty!

Photo: Glukicov (License: CC-BY-SA-4.0)

muon g-2 discrepancy

recent and future experimental progress:

- FNAL will improve precision further: factor of 4 wrt E821
- theory still needs to reduce SM uncertainty!

Photo: Glukicov (License: CC-BY-SA-4.0)

muon g-2 discrepancy

recent and future experimental progress:

- FNAL will improve precision further: factor of 4 wrt E821
- theory still needs to reduce SM uncertainty!

Photo: Glukicov (License: CC-BY-SA-4.0)

muon q-2 discrepancy

SM theory white paper

- \rightarrow T. Aoyama *et al.* (Muon g-2 Theory Initiative), Phys. Rept. **887** (2020) 1-166
- community white paper on current status of SM calculation
- new consensus on SM prediction, used for comparison with FNAL result
- many improvements on hadronic contributions

$(g-2)_{\mu}$: theory vs. experiment

- discrepancy between SM theory white paper and experiment 4.2σ
- hint to new physics?
- size of discrepancy points at electroweak scale
 heavy new physics needs some enhancement mechanism
- theory error completely dominated by hadronic effects
- how to interpret lattice-QCD result by BMWc?

- 1 Introduction
- Standard Model prediction for the muon g-2
- 3 Hadronic vacuum polarization
- 4 Hadronic light-by-light scattering
- 5 Summary and outlook

9

QED and electroweak contributions

- full $\mathcal{O}(\alpha^5)$ calculation by Kinoshita et al. 2012 (involves 12672 diagrams!)
- EW contributions (EW gauge bosons, Higgs)
 calculated to two loops (three-loop terms negligible)

	$10^{11} \cdot a_{\mu}$	$10^{11} \cdot \Delta a_{\mu}$
QED total	116 584 718.931	0.104
EW	153.6	1.0
theory total	116 591 810	43
	•	

Hadronic contributions

- quantum corrections due to the strong nuclear force
- much smaller than QED, but dominate uncertainty

hadronic vacuum polarization (HVP)

$$a_{\mu}^{\rm HVP} = 6845(40)\times 10^{-11}$$

hadronic light-by-light scattering (HLbL)

$$a_{\mu}^{\rm HLbL} = 92(18) \times 10^{-11}$$

Theory vs. experiment

	$10^{11} \cdot a_{\mu}$	$10^{11} \cdot \Delta a_{\mu}$
QED total	116584718.931	0.104
EW	153.6	1.0
HVP	6845	40
HLbL	92	18
SM total	116 591 810	43
experiment (E821+E989)	116 592 061	41
difference theory-exp	251	59

Overview

- 1 Introduction
- Standard Model prediction for the muon g-2
- 3 Hadronic vacuum polarization
- 4 Hadronic light-by-light scattering
- 5 Summary and outlook

Hadronic vacuum polarization (HVP)

- at present evaluated via dispersion relations and cross-section input from $e^+e^- \rightarrow$ hadrons
- intriguing discrepancies between e^+e^- experiments \Rightarrow treated as additional systematic uncertainty
- lattice QCD making fast progress
- 2.1 σ tension between dispersion relations and latest lattice results \rightarrow S. Borsanyi *et al.*, Nature (2021)

Hadronic vacuum polarization (HVP)

photon HVP function:

$$\sim\sim\sim i(q^2g_{\mu\nu}-q_{\mu}q_{\nu})\Pi(q^2)$$

unitarity of the *S*-matrix implies the optical theorem:

$$\operatorname{Im}\Pi(s) = \frac{s}{e(s)^2} \sigma(e^+e^- \to \text{hadrons})$$

Dispersion relation

causality implies analyticity:

Cauchy integral formula:

$$\Pi(s) = \frac{1}{2\pi i} \oint_{\gamma} \frac{\Pi(s')}{s' - s} ds'$$

deform integration path:

$$\Pi(s) - \Pi(0) = \frac{s}{\pi} \int_{4M_{\pi}^2}^{\infty} \frac{\operatorname{Im}\Pi(s')}{(s' - s - i\epsilon)s'} ds'$$

HVP contribution to $(g-2)_{\mu}$

$$a_{\mu}^{\text{HVP}} = \frac{m_{\mu}^2}{12\pi^3} \int_{s_{\text{thr}}}^{\infty} ds \, \frac{\hat{K}(s)}{s} \, \sigma(e^+e^- \to \text{hadrons})$$

- basic principles: unitarity and analyticity
- direct relation to data: total hadronic cross section $\sigma(e^+e^- \to {\rm hadrons})$
- dedicated e^+e^- program (BaBar, Belle, BESIII, CMD3, KLOE, SND)

Hadronic vacuum polarization

final white paper number: data-driven evaluation

$$a_{\mu}^{\rm LO\;HVP,\;pheno} = 6\,931(40)\times 10^{-11}$$

previous average of published lattice-QCD results

$$a_{\mu}^{\rm LO\;HVP,\;lattice\;average} = 7\,116(184)\times 10^{-11}$$

- newest lattice-QCD result
 - → S. Borsanyi et al., Nature (2021)

$$a_{\mu}^{\mathrm{LO\;HVP,\;lattice}} = 7\,075(55)\times10^{-11}$$

Two-pion contribution to HVP

- $\pi\pi$ contribution amounts to more than 70% of HVP contribution
- responsible for a similar fraction of HVP uncertainty
- can be expressed in terms of pion vector form factor ⇒ constraints from analyticity and unitarity
 - → Colangelo, Hoferichter, Stoffer, JHEP 02 (2019) 006

Result for $a_{\mu}^{\mathrm{HVP},\pi\pi}$ below 1 GeV

→ Colangelo, Hoferichter, Stoffer, JHEP 02 (2019) 006

Tension with lattice QCD

- → Colangelo, Hoferichter, Stoffer, PLB **814** (2021) 136073
- implications of changing HVP?
- modifications at high energies affect hadronic running of $lpha_{
 m OED}^{
 m eff}$ \Rightarrow clash with global EW fits
 - → Passera, Marciano, Sirlin (2008), Crivellin, Hoferichter, Manzari, Montull (2020), Keshavarzi, Marciano, Passera, Sirlin (2020), Malaescu, Schott (2020)
- lattice studies point at region < 2 GeV
- $\pi\pi$ channel dominates
- relative changes in other channels would be prohibitively large

Result for $a_{\mu}^{\mathrm{HVP},\pi\pi}$ below 1 GeV

Assumption: suppose all changes occur in $\pi\pi$ channel < 1 GeV

$$\Rightarrow a_{\mu}^{\text{total}}[\text{WP20}] - a_{\mu}^{2\pi,<1\,\text{GeV}}[\text{WP20}] = 197.7 \times 10^{-10}$$

Modifying $a_{\mu}^{\pi\pi}|_{\leq 1\,\mathrm{GeV}}$

Overview

- 1 Introduction
- Standard Model prediction for the muon g-2
- 3 Hadronic vacuum polarization
- 4 Hadronic light-by-light scattering
- 5 Summary and outlook

Hadronic light-by-light (HLbL)

- previously based only on hadronic models
- our work: dispersive framework based on unitarity and analyticity, replacing hadronic models step by step
- hadronic models only for subdominant contributions
- matching to asymptotic constraints

Hadronic light-by-light scattering

 dispersion relations + hadronic models (LO, without charm)

$$a_\mu^{\mathrm{HLbL,\,pheno}} = 89(19)\times 10^{-11}$$

first lattice-QCD results

$$a_{\mu}^{\rm HLbL,\ lattice} = 79(35)\times 10^{-11} \to \text{T. Blum \it et al., PRL 124} \ (2020)\ 132002$$

$$a_{\mu}^{\rm HLbL,\ lattice} = 106.8(15.9)\times 10^{-11} \to \text{E.-H. Chao \it et al., EPJC 81} \ (2021)\ 651$$

Hadronic light-by-light scattering

HLbL overview

 \rightarrow T. Aoyama $\it et al.,$ Phys. Rept. 887 (2020) 1-166

	$10^{11} \cdot a_{\mu}$	$10^{11} \cdot \Delta a_{\mu}$
π^0 , η , η' -poles	93.8	4.0
pion/kaon box	-16.4	0.2
S -wave $\pi\pi$ rescattering	-8	1
scalars, tensors	-1	3
axials	6	6
light quarks, short distance	15	10
c-loop	3	1
HLbL total (LO)	92	19

HLbL: recent progress

- asymptotic constraints: OPE and two-loop QCD corrections to symmetric limit $Q_{1,2,3}\gg \Lambda_{\rm QCD}$
 - \rightarrow Bijnens et al., JHEP **10** (2020) 203; JHEP **04** (2021) 240
- scalar contributions: $\pi\pi/\bar{K}K$ S-wave rescattering up to 1.3 GeV plus $a_0(980)$ in NWA:

$$a_{\mu}^{\mathsf{HLbL}}[\mathsf{scalars}] = -9(1) \times 10^{-11}$$

- → Danilkin, Hoferichter, Stoffer, PLB 820 (2021) 136502
- first steps towards including axials in dispersive
 framework: → Zanke, Hoferichter, Kubis, JHEP 07 (2021) 106,
 Colangelo, Hagelstein, Hoferichter, Laub, Stoffer, EPJC 81 (2021) 702
- holographic-QCD models point to rather large axial contribution → Cappiello et al., PRD 102 (2020) 016009, Leutgeb, Rebhan, PRD 101 (2020) 114015; arXiv:2108.12345 [hep-ph]

Overview

- 1 Introduction
- Standard Model prediction for the muon g-2
- 3 Hadronic vacuum polarization
- 4 Hadronic light-by-light scattering
- 5 Summary and outlook

Summary

- both lattice-QCD and dispersive methods making progress on hadronic contributions to $(g-2)_{\mu}$ \Rightarrow white paper
- achieved precision matches the experimental one
- new FNAL result increases tension with SM to 4.2σ
- final FNAL precision goal calls for further improvement in HLbL and HVP

Summary: HVP

- long-standing discrepancy between BaBar/KLOE \Rightarrow wait for new e^+e^- data
- intriguing tension with lattice-QCD \Rightarrow unitarity/analyticity enable **independent checks** via pion VFF and $\langle r_{\pi}^2 \rangle$, in addition to further direct lattice results on HVP

Summary: HLbL

- precise dispersive evaluations of dominant contributions
- models reduced to sub-dominant contributions, but dominate uncertainty
- recent progress on scalar contributions, ongoing work on axial-vector and tensor resonances and asymptotic matching