The intermediate water Cherenkov detector for the Hyper-Kamiokande experiment

Ryosuke Akutsu (TRIUMF)
On the behalf of the Hyper-Kamiokande collaboration
E-mail: rakutsu@triumf.ca

September 9th, 2021/NuFact2021 WG1

The Hyper-Kamiokande project

- ◆ Next generation neutrino experiment in Japan
 - The successor of Super-Kamiokande
 - 260 kiloton scale water Cherenkov detector
 - Overview talk by K.Sakashita
- ◆ Rich physics programs
 - Neutrino oscillations
 - Neutrino astronomy
 - Nucleon decay searches
- Construction has began in 2020.
 - Plan to start taking physics data in 2027

detector size

The long-baseline program

- ♦ Will study vμ->ve and vμ->ve oscillations to search for CP violation, following the successful T2K experiment
 - 2.5x more intense beam & 8x larger fiducial mass of the far detector
- ◆ 20x higher interaction rates than the T2K's ones -> measurement will be systematically limited

Current systematic uncertainties

◆ Need to achieve <3 % systematic uncertainties for Hyper-K

The Intermediate Water Cherenkov Detector

- ♦ Vertically movable detector
- ◆ Gadolinium (Gd) loading option

Why vertically moving detector?

- ◆ Different energy spectrum between the Hyper-K and near detectors due to neutrino oscillations
 - The cause of imperfect extrapolation
 - ⇒ Need to produce the same flux

- ◆ Reconstruct neutrino energy, assuming Charged-current quasi-elastic (CCQE) interaction
 - Mis-reconstruction for non-CCQE interactions with large energy (i.e. feed-down events) affects measurements
 - ⇒ Need to measure relationship between true and reconstructed energies

The NuPRSIM concept

- ◆ Neutrino energy spectrum depend on the off-axis angle
- ◆ Taking data at various vertical positions enables **mimicking** energy spectrum of interest
 - The spectrum at the Hyper-K detector
 - A monochromatic beam

Linear combination

Nue/Nuebar cross section measurement

◆ Can identify ~1% of ve/ve components in the beam

 Use the water volume of outer detector as an active shield against entering γ background

◆ Measure the double-ratio for the CP violation search

$$\frac{\sigma(\nu_{\it e})/\sigma(\nu_{\it \mu})}{\sigma(\bar{\nu_{\it e}})/\sigma(\bar{\nu_{\it \mu}})}$$

Neutrons associated with neutrino interactions

 One neutrino interaction in water tends to produce multiple neutrons

- Information about those neutrons can benefit the Hyper-K's physics analyses
 - Large uncertainty due to complicated production processes

- ◆ Need direct measurement
 - **⇒** Gd loading option

FSI: hadronic interactions inside oxygen nucleus

SI: hadronic interactions with detector medium

Multi-PMT module (mPMT)

 Much smaller size of the IWCD detector compared to the Hyper-K detector

- Need higher granularity and better timing resolution for good enough spatial resolution
 - 1.6 ns timing resolution (FHWM)

- ◆ 19x 3" diameter PMTs integrated into a water-tight module
 - High voltage and readout electronics
 - Good optical contact between acrylic dome and PMTs thanks to optical gel

Detector calibration

◆ The IWCD detector needs to be calibrated precisely at each vertical position

- ◆ Calibration of position dependence on detector response
 - Need to deploy various calibration sources (laser & radioactive sources) across the detector volume
 - Arm system for source deployment

- Potential deviation from ideal PMT position due to buoyancy and moving detector
- Photogrammetry to reconstruct 3D positions from 2D images

Machine Learning

- ◆ fiTQun as the current reconstruction
 - Maximum likelihood based algorithm

- ◆ Machine learning being developed for IWCD
 - Improved particle identification and kinematic resolution
 - Application to the IWCD physics samples is ongoing

- Significant benefit in speed
 - ResNet (GPU): 100,000 events per minute
 - fiTQun (CPU): ~1 event per minute

WatChMaL: an international working group to develop machine learning for water Cherenkov detectors

Event pile-up

- ◆ Due to the high intensity of the beam flux, there will be ~7 35% of ID interactions will happen with another ID interaction
 - ID interaction: v interaction taking place inside the detector
- ◆ Need to identify pile-up events
 - Both classical and machine learning approaches are under development
- Beam correlated backgrounds could be an issue for neutron measurement
 - Confirmed feasibility with the effect of event pile-up

Summary

- ◆ The Intermediate Water Cherenkov Detector will play the important role to control systematics uncertainties for the Hyper-Kamiokande project
 - Vertically movable detector → Interaction rates
 - Gd loading option → Neutron multiplicities
- ◆ New technologies are being developed to enable IWCD to perform precise measurements
 - Hardware → Multi-PMT photo sensor module, photogrammetry, arm-system
 - Software → Machine learning

◆ The IWCD group is working toward the compilation of the design