Reactor antineutrino anomaly in light of recent flux model refinements

Z. Xin (IHEP, Beijing)
Sept. 2021
On the basis of the work with C. Giunti, Y.F. Li, C.A. Ternes

NuFact 2021: The 22nd International Workshop on Neutrinos from Accelerators
Online Event
Outline

• Motivation
• New calculation of IBD yield
• Method of analysis
• Fit of reactor rates
• Fit of reactor fuel evolution data
• Best-fit model
• Summary
Part 1: Motivation
Motivation

• Reactor antineutrino anomaly

Reactor experiments data → test RAA for different models.

- Huber-Mueller model

- Estienne-Fallot summation model

- Hayen-Kostensalo-Severijns-Suhonen model

- Recent Kurchatov Institute measurements
 - arXiv:2103.01684

Models

Reactor data

- Reactor rates data (27)
 - 80s-90s, 2000s
 - Recent Prospect & STEREO

- Fuel evolution data (8+8)
 - Daya Bay
 - RENO

mean averaged ratio: \(\bar{R} = 0.943 \pm 0.024 \)
Part 2: New calculation of IBD yield
Reactor flux models

- Theoretical reactor antineutrino spectra
 - Conversion method
 Measured β spectra \rightarrow neutrino spectra
 - Summation method
 Sum all the decay branches

- Huber-Mueller model
 - ^{235}U, ^{239}Pu, ^{241}Pu: ILL β spectrum \rightarrow neutrino spectrum
 - ^{238}U: sum all β decay branches
 - Allowed approximation

- HKSS model
 - Forbidden transition contribution

Partially explain “5 MeV bump”:

- Measured β spectra \rightarrow neutrino spectra
- Sum all the decay branches

How to convert ILL into neutrino spectra

database
Reactor flux models

- **Kurchatov Institute model:**
 - ^{235}U HM model + KI measurement
 - ^{238}U conversion spectrum + KI measurement
 - Pu spectra: same with HM model

- **HKSS-KI model:**
 - ^{235}U HKSS model + KI measurement
 - ^{238}U and Pu: same with HKSS model

With the assumption of the unchanged ^{239}Pu comparing with ILL

KI measurement: Reduction of ^{235}U!

The Kurchatov Institute measurement (open circles) directly measured the ratio of ^{235}U beta spectrum and ^{239}Pu beta spectrum, which is lower than HM model (closed circles) in most region.

arXiv:2103.01684

Phys. Atom. Nucl. 84, no.1, 1-10 (2021)
Reactor flux models

- **Estienne-Fallot summation model**
 - Summation method
 - Nuclear database + Pandemonium-free data

Model considered in this work

- Conversion model
- RAA
- Forbidden transition
- HKSS model
- Partially explain “5 MeV bump”.
- Summation model
- EF model
- The event rate is only 1.9% deviation from Daya Bay.

ILL measurement (measured β spectra)

KI measurement (measured β spectra)
Updated IBD yields

- IBD yield $\sigma_f \sigma_{f,a} = \sum_i f_i^a \sigma_i$, $i = 235, 238, 239, \text{and} 241 \text{ for } ^{235}\text{U}, ^{238}\text{U}^\text{Pu} \text{ and } ^{241}\text{Pu}$.

- The individual IBD yield σ_i

\[\sigma_i = \int_{E_{\text{min}}}^{E_{\text{max}}} dE \frac{\Phi(E)}{\sigma_{\text{IBD}}(E)} \]

1. IBD cross section: *Phys. Rev. D60, 053003 (1999)*
 - 1st-order Vogel-Beacom IBD cross section w/ PDG 2020

 0th-order cross section
 \[\sigma_{\text{tot}}^{(0)} = \frac{2\pi^2}{m_e^5} \frac{E_e^{(0)} p_e^{(0)}}{f_{\text{p.s.}}^R \tau_n} \]

 0th-order
 \[E_e^{(0)} = E_\nu - \Delta, \quad \Delta = M_n - M_p \]

 1st-order
 \[E_e^{(1)} = E_e^{(0)} \left[1 - \frac{E_\nu}{M} (1 - v_e^{(0)} \cos \theta) \right] - \frac{y^2}{M} \]
 \[y^2 = \frac{(\Delta^2 - m_e^2)}{2} \]

2. Integral energy regions

- Neutron lifetime $\tau_n = 879.4s$
- Phase space factor $f_{\text{p.s.}}^R = 1.7152$

A historical perspective of values of neutron lifetime τ_n

0th and 1st order IBD cross section
Updated IBD yields

• The individual IBD yield σ_i
 1. IBD cross section \cite{PhysRevD60,053003(1999)}
 2. Integral energy regions (1.8→10.0 MeV)
 • Low energy region (1.8 → 8.0 MeV)
 extrapolate and interpolate with the original spectra.
 • High energy region approximation (8.0 → 10.0 MeV)
 EF summation model spectra with a very conservative 100% uncertainty.

original IBD yields

\begin{center}
\begin{tabular}{l|cccc}
Model & σ_{235} & σ_{238} & σ_{239} & σ_{241} \\
\hline
HM & 6.69 ± 0.14 & 10.10 ± 0.82 & 4.40 ± 0.11 & 6.03 ± 0.13 \\
EF & 6.28 ± 0.31 & 10.14 ± 1.01 & 4.42 ± 0.22 & 6.23 ± 0.31 \\
HKSS & 6.74 ± 0.17 & 10.33 ± 0.85 & 4.43 ± 0.13 & 6.07 ± 0.16 \\
KI & 6.27 ± 0.13 & 9.34 ± 0.47 & 4.33 ± 0.11 & 6.01 ± 0.13 \\
\end{tabular}
\end{center}

our selected IBD yields input

\begin{center}
\begin{tabular}{l|cccc}
Model & σ_{235} & σ_{238} & σ_{239} & σ_{241} \\
\hline
HM & 6.62 ± 0.16 & 10.09 ± 0.82 & 4.34 ± 0.13 & 6.02 ± 0.16 \\
EF & 6.23 ± 0.31 & 10.07 ± 1.00 & 4.37 ± 0.22 & 6.17 ± 0.31 \\
HKSS & 6.70 ± 0.17 & 10.19 ± 0.84 & 4.39 ± 0.13 & 6.09 ± 0.16 \\
KI & 6.29 ± 0.13 & 9.44 ± 0.48 & 4.34 ± 0.13 & 6.02 ± 0.16 \\
HKSS-KI & 6.36 ± 0.13 & 10.19 ± 0.84 & 4.39 ± 0.13 & 6.09 ± 0.16 \\
\end{tabular}
\end{center}

Small contribution above 8 MeV: 0.3% for 235U, 0.9% for 238U, 0.2% for 239Pu, 0.3% for 241Pu.
Part 3:
Method of analysis
LSM with Wilks’ theorem

How to treat the systematic theoretical uncertainties in the least-squares function.

Method A

A covariance matrix with experimental and theoretical uncertainties added in quadrature.

\[\chi^2 = \sum_{a,b} \left(\sigma_{f,a}^{\text{exp}} - R_{NP}^a \sigma_{f,a}^{\text{th}} \right) \left(V^{\text{tot}} \right)^{-1}_{ab} \left(\sigma_{f,b}^{\text{exp}} - R_{NP}^b \sigma_{f,b}^{\text{th}} \right) \]

\[V^{\text{tot}} = V^{\text{exp}} + V^{\text{th}} \]

\[\sigma_{f,a}^{\text{th}} = \sum_i f_i^a \sigma_i^{\text{mod}}. \]

A strongly-correlated theoretical matrix derived from the covariance matrix \(V_{ij}^{\text{mod}} \) among \(^{235}\text{U}, ^{238}\text{U}, ^{239}\text{Pu}, \) and \(^{241}\text{Pu} \)

The method A will suffer the PPP!

Peelle’s Pertinent Puzzle

strongly correlated data

the best-fit average can be lower than most of the data

non-intuitive

- improper combination of experimental and theoretical matrices
- truncation of data space

\[x_1 \]

\[x_2 \]

\[\bar{x} \]

20% normalization error

10% individual error
LSM with Wilks’ theorem

Method B
Phys. Rev. D87, 073018 (2013)
Calculate the fit results considering only the experimental uncertainties and add by hand a global theoretical uncertainty to the final result.

\[
\chi^2 = \sum_{a,b} \left(\sigma_{f,a}^{\exp} - R_{NP}\sigma_{f,a}^{th} \right) (V^{\exp})^{-1}_{ab} \left(\sigma_{f,b}^{\exp} - R_{NP}\sigma_{f,b}^{th} \right)
\]

Method C
Consider the theoretical uncertainties with appropriate **pull terms**

\[
\chi^2 = \sum_{a,b} \left(\sigma_{f,a}^{\exp} - R_{NP}\sigma_{f,a}^{th} \right) (V^{\exp})^{-1}_{ab} \left(\sigma_{f,b}^{\exp} - R_{NP}\sigma_{f,b}^{th} \right)
+ \sum_i (r_i - 1) \left(\tilde{V}^{\text{mod}} \right)_{i,i}^{-1} (r_j - 1),
\]

\[
\sigma_{f,a}^{th} = \sum_i r_i f_i^a \sigma_{i}^{\text{mod}}. \quad \tilde{V}_{i,j}^{\text{mod}} = V_{i,j}^{\text{mod}}/(\sigma_{i}^{\text{mod}} \sigma_{j}^{\text{mod}})
\]

PPP is avoided by decoupling the minimization of **physical parameters** from the minimization of pull coefficients!
Part 4: Fit of reactor rates & evolution data
Fit of reactor rates

HM model

<table>
<thead>
<tr>
<th>Original HM IBD yield</th>
<th>Updated HM IBD yield</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.69 ± 0.14</td>
<td>6.62 ± 0.16</td>
</tr>
<tr>
<td>10.10 ± 0.82</td>
<td>10.09 ± 0.82</td>
</tr>
<tr>
<td>4.40 ± 0.11</td>
<td>4.34 ± 0.13</td>
</tr>
<tr>
<td>6.03 ± 0.13</td>
<td>6.02 ± 0.13</td>
</tr>
</tbody>
</table>

Our work

Work in 2017

RAA: 2.8 σ

0.934 ± 0.024

w/ method C

Work in 2021

RAA: 2.5 σ

0.940 ± 0.024

w/ method C

RAA: 2.3 σ

0.943 ± 0.024

w/ new IBD yields

RAA: 2.8 σ (2017) \rightarrow 1.9 σ (2021)
Fit of reactor rates

These 3 models give RAA less than 1 σ . (No anomaly)
Fit of reactor fuel evolution data

To compare the fuel evolution data with the different model predictions, we first fit the evolution data with a linear function describing the IBD yield as a function of f_{239}

$$\sigma_{f,a}^{\text{lin}} = \overline{\sigma}_f + \frac{d\sigma_f}{df_{239}} (f_{239}^a - \bar{f}_{239}),$$

The HM and HKSS models are disfavored by the evolution data

- 3.1 σ for HM model
- 3.2 σ for HKSS model
- EF, KI and HKSS-KI models give values of $\overline{\sigma}_f$ and $d\sigma_f/df_{239}$ that agree with the fit of the evolution data within the uncertainties.

When using RENO data, we have the similar results.
Part 5: Best-fit model
Statistic test

- χ^2 test: only shows the size of deviation not show the sign
 rejects none of the five models

$$x_{a}^{\text{mod}} = \sum_{b} (V_{\text{tot}})^{-1/2} \left(\sigma_{f,b}^{\exp} - \sigma_{f,b}^{\text{mod}} \right)$$

Shapiro-Wilk test

sign test

positive or negative deviations

Kolmogorov-Smirnov test

Cramer-von Mises test

Anderson-Darling test

Z_K, Z_C, Z_A test

more powerful, based on likelihood ratio

CDF for reactor rates and evolution data

Statistic test

p-value = 0.05 \rightarrow confidence level 95%

rates + evolution data

<table>
<thead>
<tr>
<th>Test</th>
<th>HM</th>
<th>EF</th>
<th>HKSS</th>
<th>KI</th>
<th>HKSS-KI</th>
</tr>
</thead>
<tbody>
<tr>
<td>χ^2</td>
<td>0.21</td>
<td>0.46</td>
<td>0.14</td>
<td>0.78</td>
<td>0.60</td>
</tr>
<tr>
<td>SW</td>
<td>0.37</td>
<td>0.28</td>
<td>0.38</td>
<td>0.69</td>
<td>0.58</td>
</tr>
<tr>
<td>sign</td>
<td>0.03</td>
<td>0.38</td>
<td>0.01</td>
<td>0.38</td>
<td>0.38</td>
</tr>
<tr>
<td>KS</td>
<td>0.08</td>
<td>0.81</td>
<td>0.04</td>
<td>0.82</td>
<td>0.56</td>
</tr>
<tr>
<td>CVM</td>
<td>0.06</td>
<td>0.78</td>
<td>0.03</td>
<td>0.76</td>
<td>0.47</td>
</tr>
<tr>
<td>AD</td>
<td>0.07</td>
<td>0.72</td>
<td>0.03</td>
<td>0.76</td>
<td>0.47</td>
</tr>
<tr>
<td>Z_K</td>
<td>0.001</td>
<td>0.22</td>
<td>0.0002</td>
<td>0.15</td>
<td>0.03</td>
</tr>
<tr>
<td>Z_C</td>
<td>0.11</td>
<td>0.60</td>
<td>0.04</td>
<td>0.86</td>
<td>0.62</td>
</tr>
<tr>
<td>Z_A</td>
<td>0.14</td>
<td>0.44</td>
<td>0.06</td>
<td>0.77</td>
<td>0.40</td>
</tr>
</tbody>
</table>

EF model is the best summation model; KI model is the best conversion model.
Part 6:
Summary
Summary

• Updated IBD yields including high energy regions.

• Comparison of different fitting method
 With improved fitting method (Method C), the RAA seems smaller for all models (for HM, $2.5\sigma \rightarrow 1.9\sigma$) avoiding the PPP successfully.

• As for the best-fit model, EF model is the best summation model, and KI model is the best conversion model.

• The KI measurement can pull down the rate deficit, which implies the reactor antineutrino anomaly might be caused by mis-normalization in ILL measurements. (need other experiments to confirm)

• Shape anomaly (“5 MeV Bump”) is still not solved.
Thanks!
Backup
Oscillation

HM

KI

Δm^2_{41}

$\sin^2 2\theta_{ee}$

$[\text{eV}^2]$
Oscillation

Reactor Rates – 3σ
- Bugey-4 (1994)
- Rovno91 (1991)
- Rovno88 (1988)
- Bugey-3 (1995)
- Gosgen (1986)
- ILL (1995)
- Krasnoyarsk (1987–99)
- SRP (1996)
- Nucler (2016)
- STEREO (2020)
- Chocz (1999)
- Palo Verde (2001)
- Daya Bay (2018)
- RENO (2018)
- Double Chooz (2016)

Combined 1σ
- 1σ
- 2σ
- 3σ

Combined
- Combined