

Reactor antineutrino anomaly in light of recent flux model refinements

Z. Xin (IHEP, Beijing)

Sept. 2021

On the basis of the work with C. Giunti, Y.F. Li, C.A. Ternes

NuFact 2021: The 22nd International Workshop on Neutrinos from Accelerators Online Event

Outline

- Motivation
- New calculation of IBD yield
- Method of analysis
- Fit of reactor rates
- Fit of reactor fuel evolution data
- Best-fit model
- Summary

Part 1: Motivation

• Reactor antineutrino anomaly

Models

Part 2: New calculation of IBD yield

Reactor flux models

The Kurchatov Institute measurement (open circles) directly measured the ratio of ²³⁵U beta spectrum and ²³⁹Pu beta spectrum, which is lower than HM model (closed circles) in most region.

• HKSS-KI model:

- ²³⁵U HKSS model + KI measurement
- ²³⁸U and Pu: same with HKSS model

With the assumption of the unchanged ²³⁹Pu comparing with ILL measurement: Reduction of ²³⁵U

Reactor flux models

Phys. Rev. Lett. 123, no. 2, 022502 (2019) • Estienne-Fallot summation model

- Summation method
- Nuclear database + Pandemonium-free data

Model considered in this work Summation model Conversion model Partially explain "5 MeV bump". RAA Forbidden EF model ILL measurement \longrightarrow HM model **HKSS** model transition The event rate is only 1.9% (measured β spectra) KI measurement: deviation from Daya Bay. Reduction of ²³⁵U KI measurement KI model HKSS-KI model

(measured β spectra)

Updated IBD yields

Updated IBD yields

• The individual IBD yield σ_i

- 1. IBD cross section *Phys. Rev. D60, 053003 (1999)*
- **2. Integral energy regions (** $1.8 \rightarrow 10.0 \text{ MeV}$ **)**
 - Low energy region $(1.8 \rightarrow 8.0 \text{ MeV})$ extrapolate and interpolate with the original spectra.
 - High energy region approximation (8.0 → 10.0 MeV)
 EF summation model spectra with a very conservative 100% uncertainty.

original IBD yields

Model	σ_{235}	σ_{238}	σ_{239}	σ_{241}
$\mathbf{H}\mathbf{M}$	6.69 ± 0.14	10.10 ± 0.82	4.40 ± 0.11	6.03 ± 0.13
\mathbf{EF}	6.28 ± 0.31	10.14 ± 1.01	4.42 ± 0.22	6.23 ± 0.31
HKSS	6.74 ± 0.17	10.33 ± 0.85	4.43 ± 0.13	6.07 ± 0.16
KI	6.27 ± 0.13	9.34 ± 0.47	4.33 ± 0.11	6.01 ± 0.13

Model	σ_{235}	σ_{238}	σ_{239}	σ_{241}
$\mathbf{H}\mathbf{M}$	6.62 ± 0.16	10.09 ± 0.82	4.34 ± 0.13	6.02 ± 0.16
\mathbf{EF}	6.23 ± 0.31	10.07 ± 1.00	4.37 ± 0.22	6.17 ± 0.31
HKSS	6.70 ± 0.17	10.19 ± 0.84	4.39 ± 0.13	6.09 ± 0.16
KI	6.29 ± 0.13	9.44 ± 0.48	4.34 ± 0.13	6.02 ± 0.16
HKSS-KI	6.36 ± 0.13	10.19 ± 0.84	4.39 ± 0.13	6.09 ± 0.16

our selected IBD yields input

Small contribution above 8 MeV: 0.3% for ²³⁵U, 0.9% for ²³⁸U, 0.2% for ²³⁹Pu, 0.3% for ²⁴¹Pu.

Part 3: Method of analysis

LSM with Wilks' theorem

How to treat the systematic theoretical uncertainties in the least-squares function.

Phys. Rev. D83, 073006 (2011) Method A JHEP 1706, 135 (2017) A covariance matrix with experimental and theoretical uncertainties added in quadrature. $\chi^2 = \sum_{a,b} \left(\sigma_{f,a}^{\exp} - R_{\rm NP}^a \sigma_{f,a}^{\rm th} \right) \left(V^{\rm tot} \right)_{ab}^{-1} \left(\sigma_{f,b}^{\exp} - R_{\rm NP}^b \sigma_{f,b}^{\rm th} \right)$ $V^{\text{tot}} = V^{\text{exp}} + V^{\text{th}} \qquad \sigma_{f,a}^{\text{th}} = \sum_{i} f_i^a \sigma_i^{\text{mod}}.$ A strongly-correlated theoretical matrix derived from the covariance matrix V_{ii}^{mod} among ²³⁵U, ²³⁸U, ²³⁹Pu, and 241 Pu The method A will suffer the PPP!

LSM with Wilks' theorem

Method B Phys. Rev. D87, 073018 (2013)

Calculate the fit results considering only the experimental uncertainties and add by hand a global theoretical uncertainty to the final result.

$$\chi^{2} = \sum_{a,b} \left(\sigma_{f,a}^{\exp} - R_{\rm NP}^{a} \sigma_{f,a}^{\rm th} \right) (V^{\exp})_{ab}^{-1} \left(\sigma_{f,b}^{\exp} - R_{\rm NP}^{b} \sigma_{f,b}^{\rm th} \right)$$

Method C Method C is adopted in this work! Consider the theoretical uncertainties with appropriate pull terms $\chi^{2} = \sum_{a,b} \left(\sigma_{f,a}^{\exp} - R_{NP}^{a} \sigma_{f,a}^{th} \right) (V^{\exp})_{ab}^{-1} \left(\sigma_{f,b}^{\exp} - R_{NP}^{b} \sigma_{f,b}^{th} \right)$ $+ \sum_{a,b} \left(r_{i} - 1 \right) \left(\widetilde{V}^{\text{mod}} \right)_{ij}^{-1} (r_{j} - 1),$ $\sigma_{f,a}^{\text{th}} = \sum_{i} r_{i} f_{i}^{a} \sigma_{i}^{\text{mod}}. \quad \widetilde{V}_{ij}^{\text{mod}} = V_{ij}^{\text{mod}} / (\overline{\sigma}_{i}^{\text{mod}} \sigma_{j}^{\text{mod}})$ PPP is avoided by decoupling the minimization of physical parameters from the minimization of pull coefficients!

Part 4: Fit of reactor rates & evolution data

Fit of reactor rates

Rovno91

---- SRP

JHEP 1706, 135 (2017)

Palo Verde

- RENO

- Rovno88

Original HM IBD yield	Updated HM IBD yield
6.69 ± 0.14	6.62 ± 0.16
10.10 ± 0.82	10.09 ± 0.82
4.40 ± 0.11	4.34 ± 0.13
6.03 ± 0.13	6.02 ± 0.13

2017

- ILL

- Nucifer

+ Daya Bay

---- Gosgen

1.20

1.10

Bugey-3

- Bugey-4

- Chooz

Fit of reactor rates

Zhao Xin (IHEP)

Fit of reactor fuel evolution data

To compare the fuel evolution data with the different model predictions, we first fit the evolution data with a linear function describing the IBD yield as a function of f_{239}

$\sigma_{f,a}^{\rm lin} = \bar{\sigma}_f + \frac{d}{d}$	$\frac{\sigma_f}{\sigma_{239}} \left(f^a_{239} - \bar{f}_{239} \right),$
---	---

data within the uncertainties.

Part 5: Best-fit model

Statistic test

Statistic test

rates + evolution data

Test	HM	\mathbf{EF}	HKSS	KI	HKSS-KI
χ^2	0.21	0.46	0.14	0.78	0.60
\mathbf{SW}	0.37	0.28	0.38	0.69	0.58
\mathbf{sign}	0.03	0.38	0.01	0.38	0.38
\mathbf{KS}	0.08	0.81	0.04	0.82	0.56
CVM	0.06	0.78	0.03	0.76	0.47
\mathbf{AD}	0.07	0.72	0.03	0.76	0.47
$Z_{ m K}$	0.001	0.22	0.0002	0.15	0.03
$Z_{ m C}$	0.11	0.60	0.04	0.86	0.62
$Z_{ m A}$	0.14	0.44	0.06	0.77	0.40

EF model is the best **summation** model; **KI** model is the best **conversion** model.

Part 6: Summary

Summary

- Updated IBD yields including high energy regions.-
- → RAA: $2.8\sigma \rightarrow 1.9\sigma$
- Comparison of different fitting method With improved fitting method (Method C), the RAA seems smaller for all models (for HM, $2.5\sigma \rightarrow 1.9\sigma$) avoiding the PPP successfully.
- As for the best-fit model, EF model is the best summation model, and KI model is the best conversion model.
- The KI measurement can pull down the rate deficit, which implies the reactor antineutrino anomaly might be caused by **mis-normalization** in ILL measurements. (need other experiments to confirm)
- Shape anomaly ("5 MeV Bump") is still not solved.

Thanks!

Backup

