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FASER and FASERv

 FASER 1s a new detector to search for light, weakly coupled
long-lived particles and measure cross-sections of neutrinos,
that are produced in pp collisions at ATLAS Interaction Point
(IP), starting 1in 2022 together with ATLAS Run-3.

* FASERv 1s a detector (part of FASER) for neutrino
measurements. Will make the first measurements of neutrinos
from a collider and 1n unexplored energy regime.
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FASERvV detector

* FASERv 1s a detector consisting of emulsion, tungsten, IFT

and veto station
— Composed of 770 1-mm-thick tungsten plates, interleaved with

emulsion films
— An area of 25X30 cm?, 1.1 m long, 1.1 tons detector (220 X0)

* FASERv will be placed 1n front of the FASER main detector

FASER with 0.55T magnets

IFT | Veto station



IFT and veto system

* IFT uses the same design as the tracker
station in the FASER spectrometer.

Important for track matching between
FASER and FASERv

— Silicon strip detector with ATLAS SCT
barrel modules

— Test beam data obtained with CERN
SPS facility

* Veto station consists of two 2-cm
scintillators and WLS (Wave Length
Shifting) bars with two PMTs. Rejects
upstream charged particles

— The PMTs were tested
— The scintillators have been assembled
and are under test with cosmic rays

30X 35 cm2



Neutrino detection
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* All flavors of neutrino interactions can be detected and
distinguished from each other

v Muon identification by its track length in the detector (8
Aint)

v Muon charge identification with tracking stations -
distinguishing v, and v,

v" Neutrino energy measurement with ANN by combining
topological and kinematical variables



Expected Neutrino event rates at Run-3

[ F. Kling, arXiv:2105.08270 ]
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Expected number of CC interactions in FASERv . . )
during Run-3 * A high-intensity beam of

JER— p— neutrinos will be produced in the
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Charged Current interactions

Expected sensitivity to neutrino cross-sections
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FASERv will measure neutrino cross-sections at TeV scale which 1s
uncovered by existing experiments

Due to excellent position resolution of the emulsion detector, CC cross-
sections will be measured for all neutrino flavors

The charge measurement in FASER tracking stations behind FASERv
to separate v, and v,



Proton PDF

D meson production in CC v, interaction Vi W

1s sensitive to strange PDF 1n a proton
where tension exists between ATLAS

and PDF predictions

[ Eur Phys ). C77 (2017) 367 ]
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Forward phys1cs

Gluon PDF with Neutrinos from Charm Decay
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TI18 TI12
FASERv Pilot ATLAS

2018 FASERVYV pilot run

FASER/FASERv

The pilot runs were taken place for
neutrino detection and flux measurement

of charged particles at tunnels T112 and
TI18 in 2018

TI18 is the tunnel at the same distance
from ATLAS IP as TI12 but opposite side

The neutrino detection was performed with
a 30 kg emulsion detector installed at TT18,
collecting 12.5 fb! of data
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Pilot run background

rock detector

—

neutral
hadrons

The production rates of neutral hadrons per incident muon
[ arXiv:2105.06197 ]

Negative Muons Positive Muons

Ki, 3.3x107° 0.4 x 107"
Ks 8.0 x 1076 2.3 x 10~
n 2.6 x 10~° 7.7 x 1078
i 1.1 x 1075 3.2 x 107
A 3.5 x107° 1.8 x 1078
A 2.8 x107° 8.7 x 107"

* Energy of upstream neutral hadrons
are low — can suppress them by
vertex topology

The largest background are muons,
which can be vetoed by emulsion
vertices with a charged parent

Muons produce neutral hadrons in
upstream rock, which can mimic
neutrino interaction vertices — use
Geant4 to simulate
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Pilot data event reconstruction

Selection cuts are applied on the tracks to enhance signal and suppress backgrounds

Collimation cuts on vertices:

Reconstructed tracks passing through at least 3 plates
Vertex reconstruction for tracks with a minimum distance within 5 um
Converging patterns with 5 or more tracks were then identified as vertices

— The number of tracks with tan 6 < 0.1 with respect to the beam direction is

required to be 5 or more

— The number of tracks with tan 6 > 0.1 with respect to the beam direction is

required to be 4 or less

v" Vertices are categorized as charged
or neutral based on the presence or
absence, respectively, of charged
parent tracks

v" In the signal, all neutrino flavors are
combined

v" 18 neutral vertices were selected

Selection efficiency cuts for signal and neutral hadron
background (E > 10 GeV)

Signal Background
FTFP_BERT QGSP_BERT
Ve 0.490 Ky 0.017 0.015
Ve 0.343 Ks 0.037 0.031
Vy 0.377 n 0.011 0.012
Uy 0.266 n 0.013 0.013
Vr 0.454 A 0.020 0.021
v, 0.368 A 0.018 0.018
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Kinematic variables 1n pilot data
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Five kinematic variables are used to separate signal and background

Variable

description

Ny (tan8 < 0.1)

The number of tracks with tan6<0.1 with respect to the beam direction

Ny (0.1 < tanf < 0.3)

The number of tracks with 0.1<tan6<0.3 with respect to the beam direction

aS um

The absolute value of vector sum of transverse angles calculated considering all the
tracks as unit vectors in the plane transverse to the beam direction

(.bmean

For each track in the event, calculate the mean value of opening angles between the
track and the others in the plane transverse to the beam direction, and then take the
maximum value in the event

For each track in the event, calculate the ratio of the number of tracks with opening
angle <90 degrees and >90 degrees in the plane transverse to the beam direction, and
then take the maximum value in the event
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Pilot data analysis

To validate the MC modeling of the BDT input variables, charged vertices from muons
and hadrons are checked
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BOT output of neutrinos at the LHC



Neutrino candidates 1n pilot data

Longitudinal view Transverse view
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Preparation for Run-3

- g trench Trans\QLEASﬁv
to be on LOS '\ . over LHC pipe

, ‘ SER spectromete

95T magnets

16



Detector upgrade

* The Forward Physics
Facility (FPF) for the HL-
LHC is a proposed facility
that could house a suite of
new forward experiments

— The background muon rate
may be able to be reduced
with a sweeper magnet
(studies ongoing)

— Detector upgrade
(FASERv2) is being
discussed, with 10 times
bigger target mass and 20
times larger luminosity

« FASERv2 can have 200-
fold increase in neutrino
event rate

40 e x dliem —e.g., ~3000 v, interactions
are expected
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Summary

FASERv is a detector in FASER experiment to measure cross-section of
TeV neutrinos from proton-proton collisions at LHC - first experiment to
measure neutrinos from colliders

Cross-section for all neutrino flavors can be well separated from the
backgrounds (muons and neutral hadrons), thanks to the excellent space
resolution of the emulsion detector

FASERVv is sensitive to charm/strange PDF, hadron production rates, and

some BSM scenarios. Expect about 10,000 CC interactions in Run-3 (150
fb1)

We have detected first neutrino interaction candidates at the LHC in the
2018 pilot run data

The detector upgrade towards HL-LHC era (FASERvV2) is under discussion
with a prospect to increasing neutrino statistics by one order of magnitude.
We acknowledge the great support from CERN for FASER and its upgrade
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FASERV/FASERvV2 schedule

LHC splice collimation, HL-LHC '.'
kst cryogenics, ... installations P
~3000 fb-!
~300 fb* until 2035
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FASERV2 in HL-LHC

~30 fb!
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FASERvpilot run in 2018

FASERvphysics run starts in 2022



FASERV2 for BSM physics

[ F. Kling, Phys. Rev. D 102 (2020) 015007 ]
B — 3L Gauge Boson

The tau neutrino flux is small in
SM. A new light weakly coupled
gauge bosons decaying into tau
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SM neutrino oscillations are expected 1.00 /,H-

to be negligible at FASERv. However, ~ 0.75
sterile neutrinos with mass ~40 eV
can cause oscillations. FASERv
could act as a short-baseline neutrino
experiment
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FASERV2 for BSM physics

[ Batell, Feng, Trojanowski, 2101.10338 ]
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[ Abraham, Ismail, Kling, 2012.10500 ]

FASERvalso measures
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