

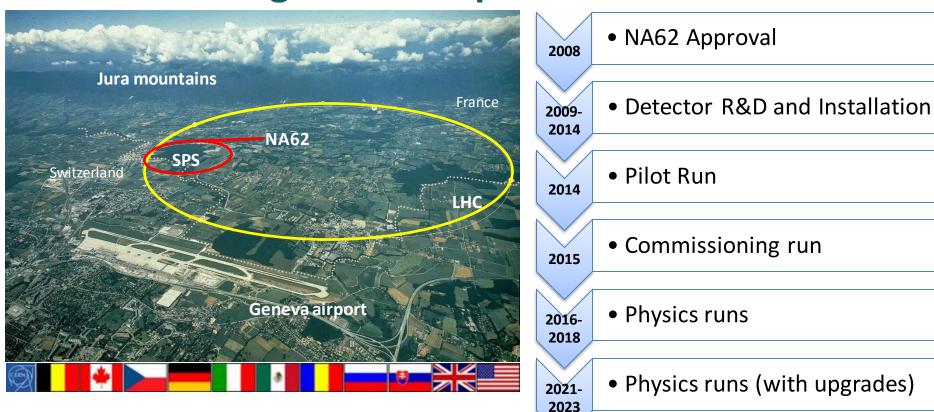
Search for K⁺ decays to a lepton and invisible particles

E.

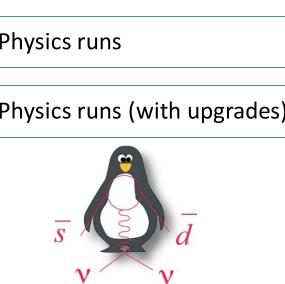
tnis

LA LIBERTÉ DE CHERCHER

On behalf of the NA62 collaboration


Nicolas Lurkin CP3, Université Catholique de Louvain NuFact 2021, 09-09-2021

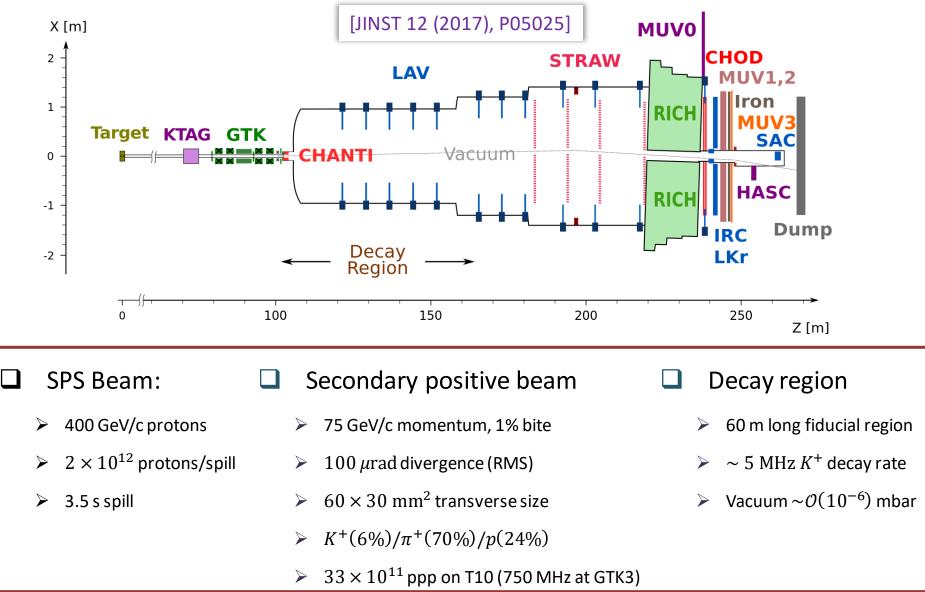
Outline


- The NA62 experiment and detector
- □ Searches for HNL production: $K^+ \rightarrow e^+ N$ and $K^+ \rightarrow \mu^+ N$
- **C** Related searches: $K^+ \rightarrow \mu^+ \nu \nu \nu$ and $K^+ \rightarrow \mu^+ \nu X$

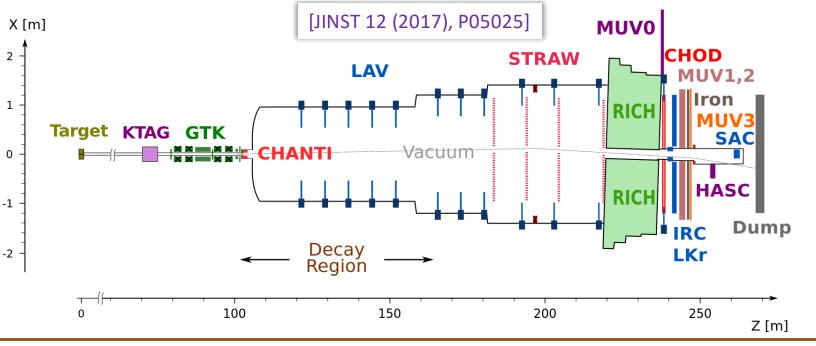
The NA62 experiment and detector

The NA62 Experiment Fixed target Kaon experiment at CERN SPS

~200 participants: Birmingham, Bratislava, Bristol, Bucharest, CERN, Dubna, GMU-Fairfax, Ferrara, Firenze, Frascati, Glasgow, Lancaster, Liverpool, Louvain-La-Neuve, Mainz, Moscow, Napoli, Perugia, Pisa, Prague, Protvino, Roma I, Roma II, San Luis Potosi, Torino, TRIUMF, Vancouver UBC



NA62 Beam and Detector


Bea

- NA62:
 - $\blacktriangleright \quad \text{Main goal is BR}(K^+ \to \pi^+ \nu \overline{\nu})$
 - Fixed target
 - In-flight decay technique
 - Suitable for wide Kaon decay programme

NA62 Beam & Detector

NA62 Beam & Detector

 $\Box \mathcal{O}(100 \ ps)$ time resolution to match upstream-downstream information

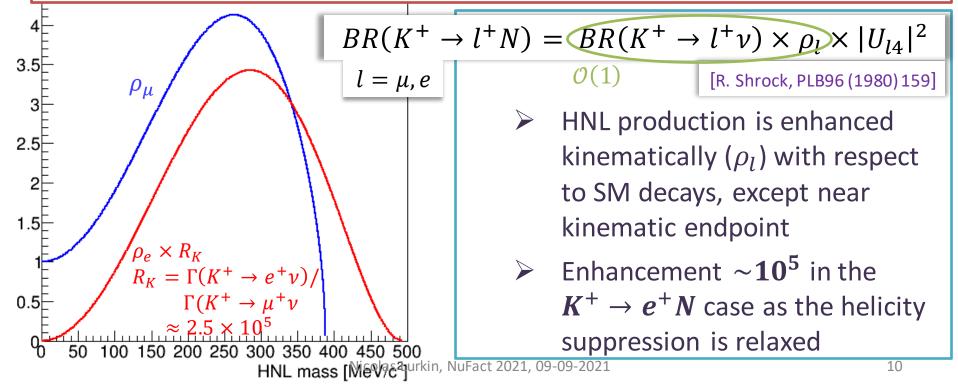
- □ Beam kaon identification and measurement (KTAG + GTK)
- □ Particle ID (RICH + LKr + HAC + MUV): $O(10^{-8})$ muon suppression
- □ High efficiency photon veto: $\mathcal{O}(10^{-8})$ rejection of $\pi^0 \rightarrow \gamma \gamma$ for $E(\pi^0) > 40$ GeV
- \Box Kinematic rejection factor: 1×10^{-3} for $K^+ \to \pi^+ \pi^0$, 3×10^{-4} for $K^+ \to \mu^+ \nu$

Data collection

Gamma Statistics

- > 2015: 1% of nominal intensity, 3×10^8 kaon decay
- > 2016: 30 days, 40% of nominal intensity, 2×10^{11} useful kaon decay
- 2017: 161 days, 60% of nominal intensity, 2 × 10¹² useful kaon decay
- > 2018: 217 days, 60% of nominal intensity, 4×10^{12} useful kaon decays

Trigger streams

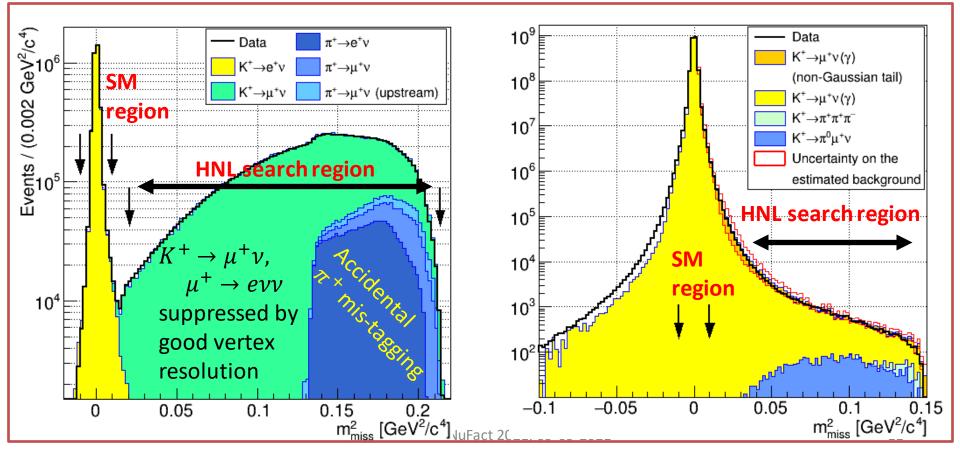

- > PNN trigger: 1 track, γ/μ veto, used for $l^+ = e^+$ channels
- > CTRL trigger/400: single charged particle in the CHOD acceptance(minimum bias trigger), used for $l^+ = \mu^+$ channels

Searches for HNL production: $K^+ \rightarrow e^+ N$ and $K^+ \rightarrow \mu^+ N$

HNL production in K⁺ decays

- **No neutrino mass in the SM**
- VMSM extension: explain neutrino oscillations, dark matter and
baryon asymmetry of the universe.[Asaka et al., Phys.Lett.B 620 (2005) 17]
 - Adds 3 right-handed sterile neutrinos
 - $> N_1$: $m_1 \sim 10 \text{ keV}$ dark matter candidate

 $> N_{2,3}$: $m_{2,3} \sim 100 \text{ MeV} - 100 \text{ GeV}$ - baryon asymmetry

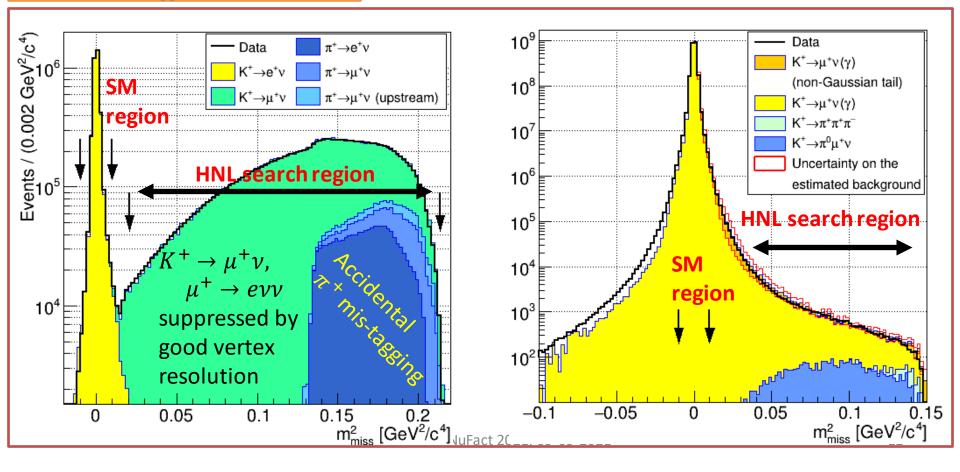

HNL selection

 $\square \quad m_{\text{miss}}^2 = (P_K - P_l)^2, P_K$ and P_l are the Kaon and lepton 4-momenta

□ HNL signal: sharp peak in the m_{miss}^2 spectrum

Galaxie Selection

- \succ K⁺ and l⁺ tracks reconstruction and matching
- Powerful PID (RICH, LKr, MUV3)
- Extra activity vetoing



HNL selection

 $\square m_{\text{miss}}^2 = (P_K - P_l)^2, P_K$ and P_l are the Kaon and lepton 4-momenta $\square \text{ HNI signal: sharp peak in}$

HNL signal: sharp peak in the $m_{
m miss}^2$ spectrum

	$K^+ ightarrow e^+ N$	$K^+ o \mu^+ N$
Trigger	PNN	CTRL/400
$N_{K, fiducial}$	$(3.52 \pm 0.02) \times 10^{12}$	$(1.14 \pm 0.02) \times 10^{10}$
N _{SM}	3.495×10^{6}	2.19×10^{9}

HNL mass scan

C Scan $m_{\rm mis}^2$	Scan $m^2_{ m miss}$ spectrum based on $m^2_{ m miss}$ resolution (σ)			
		$K^+ ightarrow \mu^+ N m_N < 300 \ { m MeV}/$	$K^+ ightarrow \mu^+ N$ c^2) $\left(m_N > 300 \ { m MeV}/c^2 ight)$	
Step size	σ/2	$1 \text{ MeV}/c^2$	$0.5 \text{ MeV}/c^2$	
Window widt	:h	1.50		
 events fro data sideb Limits on compariso 	indow, expected om polynomial f bands. $ U_{l4} ^2$: CLs on of observed v number of ever	it to 0.0 with 0.00 with	$\frac{1}{1000} = \frac{\mathbf{K}^{+} \rightarrow \mu^{+} \mathbf{N}}{\mathbf{K}^{+} \rightarrow \mu^{+} \mathbf{N}}$	

HNL upper limits

- Limit less stringent close to the π^+ decay threshold (stricter selection to shift π^+ background to higher $m_{\rm miss}^2$)
- Maximum local significance of 3.6 for $m_N = 346 \text{ MeV}/c^2$
- Accounting for look-elsewhere effect: global significance = 2.2

0.10

0.05

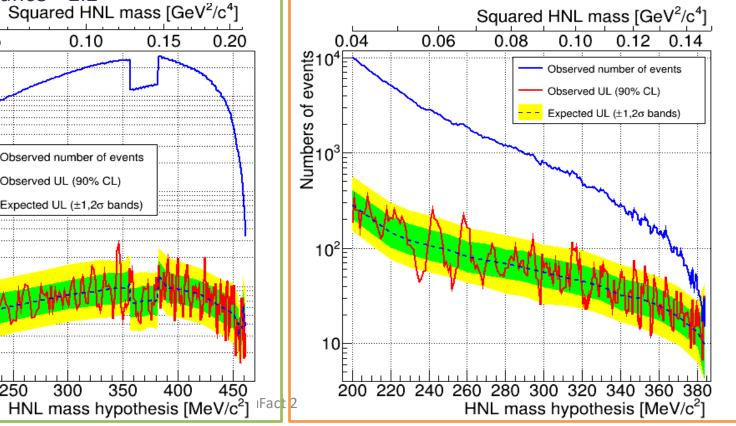
0.02

Number of events

0⁵

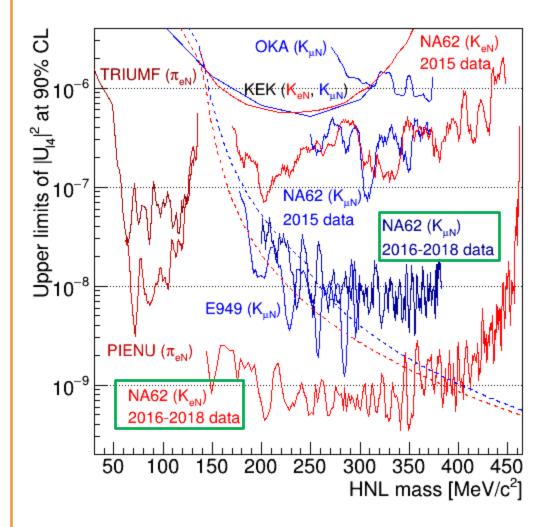
 10^{4}

10³

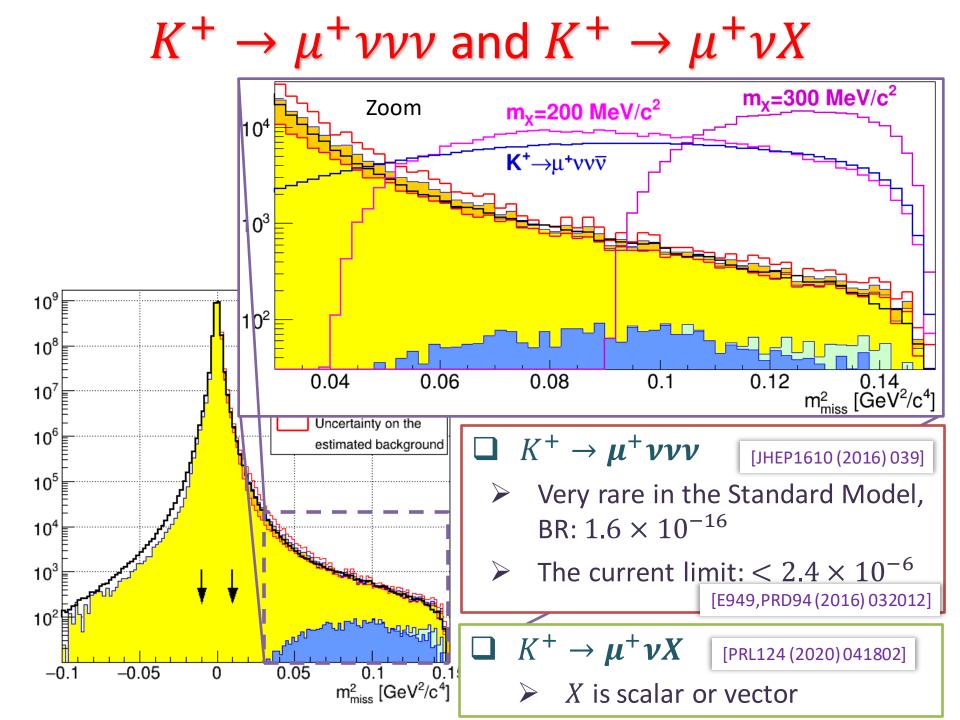

150

200

250


300

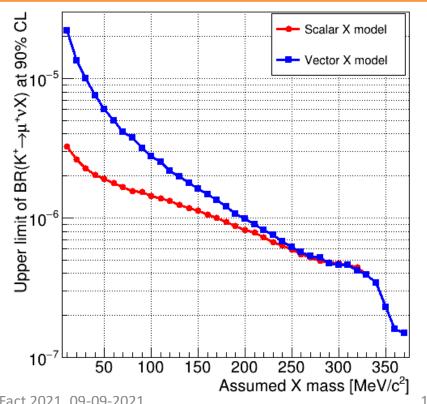
 \succ Local significance never exceeds $3 \rightarrow$ no HNL production signals are observed.



HNL result

- No HNL signal observed
- $\begin{array}{c|c} & \mathcal{O}(10^{-9}) \text{ limits on } |U_{e4}|^2 \text{ and} \\ & \mathcal{O}(10^{-8}) \text{ limits on } |U_{\mu4}|^2 \end{array} \end{array}$
- More than 2(1) orders of magnitude improvements from run 1 data for e⁺ (µ⁺) with respect to previous results.
- For μ⁺: NA62 consistent with the E949 result and extends UL to higher masses
- For e⁺: values favored by the Big Bang Nucleosynthesis (BBN) constraint (dashed red line) are excluded for HNL masses up to 340 MeV/c²
- Closely related study: $K^+ \rightarrow l^+ \nu \nu \nu$ and $K^+ \rightarrow l^+ \nu X$ where X is invisible: predict background from MC simulation

Related searches: $K^+ \rightarrow \mu^+ \nu \nu \nu$ and $K^+ \rightarrow \mu^+ \nu X$


$K^+ \rightarrow \mu^+ \nu \nu \nu$ and $K^+ \rightarrow \mu^+ \nu X$

$\Box \quad K^+ \to \mu^+ \nu \nu \nu$

- > Search region $m_{miss}^2 > 0.1 \ GeV^2/c^4$ (optimized to extract strongest limit)
- Solution Observed events: 6894, expected from MC: 7549 ± 92
- Set upper limit: 1.0 × 10⁻⁶ at 90%CL in the SM framework

$\Box \quad K^+ \to \mu^+ \nu X$

- ▶ Mass range $10 370 \text{ MeV}/c^2$
- N_{exp} vs N_{obs} for each mass hypothesis and extract limit
- No signal observed
- The ULs in the scalar model are stronger than those in the vector model due to larger mean m²_{miss}

Conclusions

- World best upper limits on HNL mixing parameters have been set with Run1 data:
 - \succ $\mathcal{O}(10^{-9})$ limits on $|U_{e4}|^2$, full data set [PLB 807 (2020) 135599]
 - \succ $\mathcal{O}(10^{-8})$ limits on $|U_{\mu4}|^2$, full data set [PLB 816 (2021) 136259]
- First search for $K^+ \rightarrow \mu^+ \nu X$ decays has been performed in the mass range $10 - 370 \text{ MeV}/c^2$: [PLB 816 (2021) 136259]
 - ▶ Upper limits $\mathcal{O}(10^{-7})$ for high m_X and $\mathcal{O}(10^{-5})$ for low m_X at 90% CL
 - → World best UL on $BR(K^+ \rightarrow \mu^+ \nu \nu \nu)$ set: 1.0×10^{-6} at 90% CL
- This July, NA62 started a new data-taking period covering the full extent of LHC run
 - Expectation to run at 30% higher beam intensity and collect $O(10^{13}) K^+$ decays
 - Expect to collect 10¹⁸ protons-on-target in "dump mode" to further probe HNL parameters, with new muon tagger to reduce muon backgrounds from the target