Tests of Neutrino Mass Models at CMS

Sungbin Oh
Seoul National University
On behalf of CMS collaboration

NuFACT 2021 @ Cagliari, Italy
Introduction

- Discovery of neutrino oscillations

- At least two neutrinos are **massive**
- Direct measurement of m_{ν_e} at KATRIN experiment: < 1.1 eV

- What is the mechanism of neutrino mass generation?
 - Yukawa? Then, where are **right-handed** fields?
 - Why neutrinos have such **small masses**?
• Seesaw mechanism - Majorana and Yukawa mass terms

\[
\begin{pmatrix}
\bar{V}_L & \bar{N}_R^C
\end{pmatrix}
\begin{pmatrix}
0 & M_D \\
M_D^T & M_M
\end{pmatrix}
\begin{pmatrix}
V_L^C \\
N_R
\end{pmatrix}
\]

Diagonalize mass matrix \(M_D << M_M \)

\[
\begin{align*}
M_1 &= M_M \\
M_2 &= -\frac{M_D^2}{M_M}
\end{align*}
\]

Heavy Majorana neutrino
Small neutrino masses

• **Origin** and **smallness** of neutrino masses are explained

• The left-right symmetry model
 • Maximum parity violation of the Standard Model (SM) - Why?
 • Spontaneous symmetry breaking of the left-right symmetric group
 • \(SU(2)_L \times SU(2)_R \times U(1)_{B-L} \)
 • Extra gauge bosons \(Z', W_{R^\pm} \) and right-handed neutrinos \(\nu_R \)
 • \(B-L : \) baryon number - lepton number
 • Matter/anti-matter asymmetry of the universe
 • Natural seesaw mechanism via VEVs of scalar fields
• Signal processes at proton-proton collisions
 • Type-I seesaw model (TISM)
 Two leptons
 Three leptons
 mTISM : JHEP01(2019)122
 Long-lived : CMS-EXO-20-009 NEW!!

• Left-right symmetric model (LRSM)
 W_R & HNL
 Z' & HNL pair
 ττ : JHEP07(2017)121
 JHEP03(2017)077
 Soon!! ee, μμ : CMS-EXO-20-006
 Soon!! ee, μμ : CMS-EXO-20-002
 NEW!!
The Compact Muon Solenoid

- Multi-purpose detector
 - Silicon tracker (pixel & strip)
 - PbWO₄ ECAL
 - Brass - Scintillator tile HCAL
 - Superconducting magnet - 3.8 T
 - Gaseous muon system

- Reconstruct particles using all sub-detectors
 - The particle-flow algorithm
 - Energy/momentum resolutions
 - e/γ : 1 (0.6) % @ 20 (100) GeV
 - muon : 1 (2) % @ 20 (100) GeV
 - Jets : 10 (5) % @ 100 (1000) GeV
Type-I seesaw Model (TISM)
3-leptons with long-lived heavy neutrino
TISM 3-leptons : Long-lived

- The life-time of heavy neutral lepton (HNL)
 - \(\tau_N \propto \frac{1}{m_N^5} V_{LN}^2 \)
 where \(V_{LN} \) is mixing between HNL and \(\nu_L \) (\(L = e, \mu, \) and \(\tau \))
 - Significant where \(m_N < 20 \text{ GeV} \) : several cm \(\sim \) few m

- Majorana HNL
 - \(N \rightarrow W^* \ell \)
 - No opposite-sign same flavor (OSSF) dilepton
 - Background reduction

![Diagram of Majorana and Dirac leptons]
• Only one among V_{eN}, $V_{\mu N}$, and $V_{\tau N}$ is nonzero

• Event selection
 • Using electrons and muons
 • One prompt lepton (l_1) + two displaced leptons (l_2, l_3)
 • $1 \text{ GeV} < m_N < 20 \text{ GeV}$
 • Small opening angle between l_2 and l_3
 • Large angular separations between l_1 and l_2, l_3
 • OSSF dilepton mass veto: ω, ϕ, $J/\psi(1S, 2S)$, $Y(1S, 2S, 3S)$, and Z
 • Secondary vertex of l_2, l_3
 • Δ_{2D}: transverse position of l_2, l_3 vertex
 • $\Delta_{2D}/\sigma(\Delta_{2D}) > 20$
 • No bottom quark tagged jet: B meson semi-leptonic decay background
 • For $V_{\mu N}$, $\mu\mu\mu$, $\mu\pm\mu\mp e\pm$ (Dirac), and $\mu\pm\mu\pm e\mp$ (Majorana)
 • For V_{eN}, eee, $e\pm e\mp\mu\pm$ (Dirac), and $e\pm e\pm\mu\mp$ (Majorana)
• Further categories

\[
m(\ell_2 \ell_3) \text{ (GeV)} \quad \Delta_{2D} \text{ (cm)}
\]

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td><0.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.5–1.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.5–4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>>4</td>
<td><0.5</td>
<td></td>
</tr>
<tr>
<td>>4</td>
<td>>0.5</td>
<td></td>
</tr>
</tbody>
</table>

• No excess beyond the expected background

• Binned likelihood fit is performed to exclude \(|V_{LN}|^2\) as functions of HNL masses
• Limits on V_{LN} vs m_N planes
• Regions inside curves are excluded
• Short-lived at top-right corner
• Not sensitive

• Clear improvement w.r.t. DELPHI results in the displaced regime

• World best sensitivity where m_N is 1~14 GeV

Majorana HNL

Dirac HNL
Left-right Symmetric Model
$W_R + \text{heavy Majorana neutrino}$
Simultaneous search for extra gauge boson (W_R) and HNL

- Challenging kinematic signature
 - Boosted HNL
 - $m_{W_R} >> m_N$
 - A lepton and two jets are merged

Multiple object definitions

- Loose and tight leptons: different isolation criteria
 \[\sum_i p_T^{\text{Particle}} < \text{Cut}, \] where p_T is transverse momentum

- Jets
 - Merged debris of parton shower and hadronization: anti-k_T algorithm
 - AK4 and AK8 jets: different merging cone sizes ($\Delta R = 0.4$ and 0.8)
The Lepton Subjet Fraction (LSF)

For boosted HNL

Recluster the jet into 3-subjets with exclusive kt algorithm: Rewinding the parton shower back to the hardest splitting

Signal lepton is from hard process \rightarrow left alone until the last steps

Good discriminating power between background and signal

Event selection

Resolved: two tight leptons + at least two AK4 jets

Boosted: one tight lepton + at least one AK8 jet with $\text{LSF} > 0.75$

Additional cuts on W_R and HNL candidate masses

$$\text{LSF} = \frac{p_T(\text{lepton})}{p_T(\text{subjet})}$$

arXiv:1410.0362
• Reconstructed W_R mass plots

• No significant excess beyond the expected background

• Set exclusion curve in (m_{W_R}, m_N) space using binned likelihood
• Expected limit is improved in both resolved and boosted regions
 • Expected (observed) lower limit at 95% CL
 • $m_N=200$ GeV : 5.0 (4.6) TeV in ee and 5.3 (5.4) TeV in $\mu\mu$
 • $m_N=mW_R/2$: 5.2 (4.7) TeV in ee and 5.2 (5.0) TeV in $\mu\mu$
 • Significant improvements in the boosted ($m_N \ll mW_R$) regions
 • The world best limit in the boosted region
Summary

• Nonzero and smallness of neutrino masses arise questions for mass generation mechanism of neutrinos

• It could be related with more fundamental questions such as matter/anti-matter asymmetry of the universe

• Various models for neutrino masses have been tested at CMS
 • Two new interesting searches
 • TISM 3-lepton targeting long-lived HNL and LRSM $W_R + HNL$

• New techniques improved sensitivity much
 • The improvement is ongoing
 • LHC Run 3 will start next year
 • Interesting results are waiting for us - Stay tuned!