Neutrinoless Double Beta Decay Search with CUPID

F.Bellini

Sapienza Università di Roma & INFN Roma

Nufact 2021, Cagliari, Italia, 6-11 September 2021

Double Beta Decay

• $(A,Z) \rightarrow (A,Z+2) + 2e^{-} + 2\overline{v}$

- ▶ 2nd order weak process in SM,
- Measured at a few % precision
- ► $t^{2v}_{1/2} \gtrsim 10^{18} \text{ yr}$

 $\Delta L=2$

 Δ (B-L)=-2

Ονββ

n

• $(A,Z) \rightarrow (A,Z+2) + 2e^{-}$

- Forbidden in SM, L and B-L violated
- Matter creation in LAB (could explain barion asymmetry in the universe)
- Many non SM diagrams can contribute
- Simplest and plausible model foresees exchange light-mass Majorana neutrinos →m_v≠0 and Ψ≡Ψ^C
- ► $t^{0v}_{1/2} \ge 10^{25-26} yr$

Ov Double Beta Decay

$0\nu\beta\beta \Leftrightarrow \nu$ mass

1/2

Bolometric detectors

- Solid state detectors operating at low temperatures ~10 mK
- Readout with sensitive low temp. semicon. NTD-Ge thermistor
- Isotope of interest embedded in the source
- Flexible choice of Isotopes (Mo,Cd,Se,Te)
- Resolution $@0\nu\beta\beta$ energy: ~0.2% FWHM
- Detector response independent of particle types

 $R(T) \simeq 1 \,\Omega \cdot \exp\left(\frac{3 \,\mathrm{K}}{T}\right)^{\frac{1}{2}}$

CUORE: a ton scale detector

- 988 natTeO₂ bolometers
- 742 kg of TeO2, 206 kg ¹³⁰Te.
 - Larger bolometric detector ever built
- **Operating in the CUORE cryostat**
 - Most powerful dilution refrigerator in the world
- Stable data taking since 2019

CUPID builds on years of experience and success with CUORE at LNGS

CUPID

CUPID: CUORE Upgrade with Particle Identification

Goal: fully probe the Inverted Hierarchy region

- discovery sensitivity in the 12-20 meV range
- improve the sensitivity to $m_{0\nu\beta\beta}$ by a factor of ~10

CUPID Strategy

- Re-use CUORE Infrastructure and replace the CUORE TeO₂ detector with a new array, based on 95% enriched Li₂¹⁰⁰MoO₄
- Enough to take a leap forward in sensitivity because we reduce dramatically \sim (150) the background in the $0\nu\beta\beta$
 - the new ββ candidate ¹⁰⁰Mo has a higher transition energy than the ¹³⁰Te CUORE candidate: less γinduced background in ROI, more favourable phase space and matrix elements
 - the new detector has a very efficient α particle rejection capability: remove the dominant background source seen in CUORE

• Technology demonstrated on CUPID-0 and CUPIDMo prototypes

Measure heat and light from energy deposition

Heat is particle independent, but light yield depends on particle type

Actively discriminate $\boldsymbol{\alpha}$ using measured light yield

CUPID Infrastructure

CUPID will utilize existing infrastructure (CUORE cryostat, experimental site)

CUORE cryostat

- Multistage cryogen-free cryostat
- Cooling systems: fast cooling system, Pulse Tubes (PTs), and
- Dilution Unit (DU)
 ~15 tons @ < 4 K
 - \sim 3 tons @ < 50 mK
- anti-vibration system
- Active noise cancelling

CUORE (passive) shielding

- Ancient Roman Pb shielding in cryostat
- External Pb shielding
- H₃BO₃ panels + polyethylene

- CUORE hut and faraday cage
- AntiRadon and clean room
- Storage area

CUPID Detector

- Single module: Li₂¹⁰⁰MoO4, 45x45x45 mm, 280 g
- Detector: 57 towers of 14 floors with 2 crystals each, 1596 crystals
- ~240 kg of ¹⁰⁰Mo with >95% enrichment
 ~1.6.10^{27 100}Mo atoms
- CUPID

- Ge ligi as in (• Eac
- ottom LD

ireflective coating

NTD readout for both LD and Li₂¹⁰⁰MoO4

Tower Arrangement

Detector Module

Gravity stacked structure Crystals thermally interconnected

CUPID Background model

Our background model reconstruction approach is well validated in multiple experiments.

All the materials for CUPID have been directly measured in bolometric setups.

Characterize β/γ background from cryogenic system and detector holders in the ¹⁰⁰Mo ROI (Q_{ββ}= 3034 keV)

Alpha-rejection Confirms the β/γ background from detector holders in 3 MeV ROI

Data confirms:

- α tagging performance
- Radiopurity of crystals
- Energy resolution

Primary background in CUORE

- Same cryogenic infrastructure as CUPID (direct measurement)
- Fit to the observed spectra to extract origin and level of contaminants (based on 300 kg · yr exposure)

- Degraded α background
 - Decays with Q-value in 4-8 MeV range that lose part of the energy in nearby passive materials
 - ▶ Background in CUORE ROI: 1.5 10⁻² ckky
- Gamma background
- CUORE Q_{ββ}(2528 keV): 10⁻³ ckky
- CUPID moves Q_{ββ} at 3034 keV
 <10⁻⁴ ckky

Background in CUPID

- Background goal: 10⁻⁴ ckky
- CUPID will reduce backgrounds primarily by
 - Eliminating surface α 's with PID
 - Reducing β/γ continuum backgrounds by moving the ROI from 2.5 MeV to 3 MeV (~10x), lower cross section and delayed coincidence (bkgd from ²¹⁴Bi/ ²⁰⁸Tl β continuum from contaminations in crystal bulk and on nearby surfaces)
 - Eliminating muons with a muon tagger

	CUORE BI (at 2527 keV)	CUORE BI (at 3034 keV)	Mitigation	CUPID BI Goal (at 3034 keV)
	ckky	ckky		ckky
Surface α's	1.4×10 ⁻²	1.4×10 ⁻²	Particle Identificatio n	Negligible
Compto n γ's	10 ⁻³	10-4	Moving the ROI Delayed Coincidence	5×10⁻⁵
Muons	10-4	10-4	Muon Veto Panels	<10-6
Pileup	Negligible	Negligible	LD Timing Resolution	5×10-5

Pile up

- The relatively fast decay rate of ¹⁰⁰Mo (T_{1/2 2v} = 7.1x10¹⁸ yr) leads to the possibility of two 2vββ decays events piling up and reconstructing in the ROI
- Need ~170 μs effective timing resolution
 - Li₂MoO₄ are intrinsically slow Δt demonstrated down to ~1ms
 - Light detectors have much faster intrinsic time constants-> higher sampling rate, wider bandwidth electronics, lower noise, smaller NTD, ML techniques
 - Developed simulations that allow us to test various rise time, noise, and system bandwidth configurations
 - a factor of 2-3 improvement over current (typical) performance required

CUPID scenarios

CUPID Baseline

- Mass: 450 kg (240 Kg) of $Li_2^{100}MoO_4(^{100}Mo)$ for 10 yrs
- Energy resolution: 5 keV FWHM
- Background: 10-4 cts/(keV kg yr)
- Discovery sensitivity T_{1/2} > 1.1×10²⁷ yr (3σ)
- Discovery sensitivity $M_{\beta\beta}$ > [12-20] meV (3 σ)
- Conservative, limited technology verification remaining

CUPID scenarios

• Discovery sensitivity $M_{\beta\beta} > [9-15] \text{ meV} (3\sigma)$

Pileup background below ~1×10⁻⁵ cnts/(keV kg yr).

- achieved e.g. with the use of TES-based light detectors.

Surface backgrounds from the holders reduced by a factor of ~ 3 .

- -Baseline background budget from crystals and holders amounts to 3.6×10⁻⁵ cnts/(keV kg yr).
- -Could be reduced e.g. through the use of the laser machining

CUPID 1 Ton

An Inverted Hierarchy Precision measurement device across multiple isotopes or a Normal Hierarchy Explorer

- Multi-cryostat setup or large-scale dilution refrigerator(cooling power comparable to CUORE), technologically achievable (increasingly common in Quantum Computing)
- Background goal of 5×10⁻⁶ cts/(keV kg yr) requires more effort
- Likely require full implementation of next-generation (TES or mKID) low-noise, highbandwidth quantum sensors
- Need to consider/verify subdominant backgrounds

Conclusions

- CUPID builds on an existing and well-functioning international collaboration
- Collaboration has operational experience at LNGS for ton-scale, bolometric experiment and utilizes existing infrastructure
- Cost effective, timely, and leverages international investments.
- Limited technology verification remaining for CUPID baseline.
- Data-driven background model reaches baseline goal of b~10⁻⁴ ckky.
- Particle identification demonstrated in medium scale prototypes
- Enrichment and crystal growth demonstrated at required scale

CUPID prepared to fully explore the inverted ordering region using only 240 kg of ¹⁰⁰Mo

Plans for CUPID-1T experiment are feasible and within technical reach of bolometer technology. CUPID baseline/reach will help understand backgrounds for CUPID-1T.

CUPID Collaboration

A strong international collaboration: ~140 collaborators across 7 countries

LNGS Laboratory

120 km from Rome

 \sim 3600 m.w.e. deep

 μ flux: ~ 3x10⁻⁸/(s cm²)

 γ flux: ~ 0.73/(s cm²)

neutrons: 4x10⁻⁶ n/(s cm²) below 10 MeV

Y beam

