An Upgrade Path toward Multi-MW Beam Power at Fermilab

Jeffrey Eldred
NuFACT 2021
September 6th 2021
Fermilab Upcoming Upgrades Now 750kW
Fermilab Upcoming Upgrades PIP-II 1.2MW

1.2 MW LBNF Neutrinos to DUNE

PIP-II SRF Linac 0.8 GeV
DUNE long-baseline neutrino program calls for 2.4 MW
DUNE Physics, with 2.4 MW at 6 years

Physics Milestone

<table>
<thead>
<tr>
<th>Milestone Description</th>
<th>Exposure</th>
</tr>
</thead>
<tbody>
<tr>
<td>5σ Mass Ordering</td>
<td>1</td>
</tr>
<tr>
<td>($\delta_{CP} = -\pi/2$)</td>
<td></td>
</tr>
<tr>
<td>5σ Mass Ordering</td>
<td>2</td>
</tr>
<tr>
<td>(100% of δ_{CP} values)</td>
<td></td>
</tr>
<tr>
<td>3σ CP Violation</td>
<td>3</td>
</tr>
<tr>
<td>($\delta_{CP} = -\pi/2$)</td>
<td></td>
</tr>
<tr>
<td>3σ CP Violation</td>
<td>5</td>
</tr>
<tr>
<td>(50% of δ_{CP} values)</td>
<td></td>
</tr>
<tr>
<td>5σ CP Violation</td>
<td>7</td>
</tr>
<tr>
<td>($\delta_{CP} = -\pi/2$)</td>
<td></td>
</tr>
<tr>
<td>5σ CP Violation</td>
<td>10</td>
</tr>
<tr>
<td>(50% of δ_{CP} values)</td>
<td></td>
</tr>
<tr>
<td>3σ CP Violation</td>
<td>13</td>
</tr>
<tr>
<td>(75% of δ_{CP} values)</td>
<td></td>
</tr>
<tr>
<td>δ_{CP} Resolution of 10 degrees</td>
<td>8</td>
</tr>
<tr>
<td>($\delta_{CP} = 0$)</td>
<td></td>
</tr>
<tr>
<td>δ_{CP} Resolution of 20 degrees</td>
<td>12</td>
</tr>
<tr>
<td>($\delta_{CP} = -\pi/2$)</td>
<td></td>
</tr>
<tr>
<td>$\sin^2 2\theta_{13}$ Resolution of 0.004</td>
<td>15</td>
</tr>
</tbody>
</table>

DUNE TDR, 2018
Fermilab Upcoming Upgrades Future 2.4MW

Fermilab Accelerator Complex

2.4 MW LBNF Neutrinos to DUNE

Recycler?

Replace Booster

PIP-II SRF Linac 1-3 GeV

Fixed-Target Experiments, Test Beam Facility

Low-Energy Neutrino Experiments

High-Energy Neutrino Experiments

Muons Delivery Ring

Muon Experiments

Jeffrey Eldred | An Upgrade Path toward Multi-MW Beam Power at Fermilab

9/8/2021
2.4 MW Upgrade: Build RCS and/or Linac to 8 GeV

How we get to 2.4 MW will set the stage for the future of Fermilab!
8 GeV Linac Option

Main Injector (MI)

Optional Storage Ring

Recycler?

8 GeV Linac

PIP-II Linac

8 GeV Linac Option
Rapid-Cycling Synchotron (RCS) Option

Optional 1-3 GeV Linac Upgrade

Main Injector (MI)

Optional Storage Ring

RCS

PIP-II Linac

Optional Storage Ring
In 2008, **Project X**: 8 GeV SRF Linac, directly into Main Injector.

In 2010, **Project X ICD-2**: 2 GeV Linac, New 2-8 GeV RCS.

In 2018, **S. Nagaitsev and V. Lebedev**: updated version of ICD-2.

In 2019, **J. Eldred, V. Lebedev, A. Valishev**: parametric study of RCS design.

The RCS path to multi-MW are well-considered, design requirements are needed.

In 2020, **Committee for Fermilab Booster Upgrade** an integrated design effort:
- Science Working Group (R. Harnik & about 25-75 people)
- Accelerator Working Group (M. Syphers & about 25 people)

We have been asked to develop a scenario to present to the Fermilab directorate and to present on Fermilab’s behalf for Snowmass.

However, this design team does not represent any decision at higher levels.

2 GeV Linac + RCS Scenario:
- Accelerator Working Group paper - recent ArXiv paper.
- Science Working Group paper - mostly complete, still open.
Contents

1 Introduction - Physics Opportunities for Booster Replacement 2
2 Charged lepton flavor violation in muon to electron conversion 3
3 Charged lepton flavor violation with muon decays 6
4 Fixed-Target Searches for New Physics with $\mathcal{O}(1 \text{ GeV})$ Proton Beam Dumps 8
5 Fixed-Target Searches for New Physics with $\mathcal{O}(10 \text{ GeV})$ Proton Beams at Fermi National Accelerator Laboratory 14
6 Kaons Decay at Rest 19
7 High Energy Proton Fixed Target 21
8 Electron missing momentum 23
9 Nucleon Electromagnetic Form Factors from Lepton Scattering 25
10 Electron beam dumps 29
11 Muon Missing Momentum 32
12 Muon Beam Dump 35
13 Physics with Muonium 37
14 Muon Collider R&D and Neutrino Factory 40
15 Rare Decays of Light Mesons 43
16 Neutron-Antineutron Oscillations 46
17 Proton Storage Ring: EDM and Axion Searches 48
18 Tau Neutrinos 49
19 Proton Irradiation Facility 53
20 Test-beam Facility 55
<table>
<thead>
<tr>
<th>Charged lepton flavor violation: muon to electron conversion</th>
<th>Dark Sectors</th>
<th>ν Physics</th>
<th>CLFV</th>
<th>Precision tests</th>
<th>R&D</th>
</tr>
</thead>
<tbody>
<tr>
<td>Charged lepton flavor violation with muon decays</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Stopped Pion Source</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kaons Decay at Rest</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DM searches with Intermediate Energy Protons</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>High Energy Proton Fixed Target</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Electron missing momentum</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nucleon Electromagnetic Form Factors from Lepton Scattering</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Electron beam dumps</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Muon Missing Momentum</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>N-Nbar oscillations</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Muon Collider R&D and Neutrino Factories</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tau Neutrinos</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rare Decays of Light Mesons</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Proton Irradiation Facility</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Proton Storage Ring: EDM and Axion Searches</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Test-beam Facility</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Physics with Muonium</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Muon Beam Dump</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Proposed Experiments

2 GeV CW-capable beam, 2mA
- mu2e-II type charged-lepton flavor violation experiment
- Low energy muon experiments (muonium, muon decay)
- REDTOP run-II/run-III program (rare-decays)
- neutron-antineutron oscillation experiments

2 GeV pulsed beam from Storage Ring, ~1 MW
- stopped pion source experiments
- dark matter search at GeV-scale
- PRISM charged-lepton flavor violation experiments

8 GeV RCS program, ~1 MW
- kaon decay-at-rest program
- dark matter search from intermediate energy protons
- proton irradiation facility
- any successors to short-baseline neutrino program
- NuSTORM and muon-collider R&D
- muon beam dump, missing muon momentum

120 GeV Slow-Extraction program, 8e12 over six second, once per min.
- dark matter spectrometer experiment
- muon missing-momentum experiment
- test beam program
I) Assume PIP-II proceeds according to current plans.

II) Scenario should enable the Main Injector to achieve the 2.4 MW at 120 GeV for DUNE/LBNF in the near term.
 - and for a 60 GeV MI cycle, at least 2 MW.

III) Scenario should allow a robust experimental program and enable future high-power upgrades.

IV) Identify topics which may require R&D.
Linac + RCS Scenario

At 2 GeV injection energy, space-charge is manageable for ~37e12 RCS, - For 20 Hz rep. rate, the beam can be stacked directly into Main Injector. - If we stack directly into MI, there will be extra cycles for 8 GeV program. - **Sidebar:** Whether it would be possible/preferable to get to 2.4 MW with a Recycler-like 8-GeV storage ring is hotly debated.

At 2 mA linac injection current, long injection time becomes an issue for high-intensity, fast-ramping RCS.

Solution 1: Retrofit PIP-II linac for 5-10 mA pulses, 0.6-1.2 ms injection. - This strategy has strong precedents at other facilities (SNS, J-PARC) - If that retrofit were to take place earlier, would benefit PIP-II Booster.

Solution 2: Create 2 GeV storage ring for injection, transfer to RCS. - Allows dedicated injection optics and longer accumulation time. - With a subsequent laser stripping update, allows additional opportunity for MW-class pulsed 2 GeV proton program (capability overlaps with SNS).

Path to 4 MW Main Injector, by upgrade MI ramp rate & second target hall
High-Level Parameters of Possible Upgrade Scheme

<table>
<thead>
<tr>
<th>Parameter</th>
<th>PIP-II</th>
<th>RCS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Linac Energy</td>
<td>0.8 GeV</td>
<td>2 GeV</td>
</tr>
<tr>
<td>Linac Current</td>
<td>2 mA</td>
<td>2 mA</td>
</tr>
<tr>
<td>RCS Energy</td>
<td>8 GeV</td>
<td>8 GeV</td>
</tr>
<tr>
<td>RCS Intensity</td>
<td>6.5 e12</td>
<td>37 e12</td>
</tr>
<tr>
<td>RCS Rep. Rate</td>
<td>20 Hz</td>
<td>20 Hz</td>
</tr>
<tr>
<td>Number of Batches</td>
<td>12</td>
<td>5</td>
</tr>
<tr>
<td>Available RCS Power</td>
<td>0.08 MW</td>
<td>0.8 MW</td>
</tr>
<tr>
<td>Main Injector Intensity</td>
<td>80 e12</td>
<td>185 e12</td>
</tr>
<tr>
<td>Main Injector Cycle Time</td>
<td>1.2 s</td>
<td>1.4 s</td>
</tr>
<tr>
<td>Main Injector Power (120 GeV)</td>
<td>1.2 MW</td>
<td>2.4 MW</td>
</tr>
<tr>
<td>Ultimate Main Injector Power</td>
<td>1.2 MW</td>
<td>4.0 MW</td>
</tr>
</tbody>
</table>
Differs from ICD-2 scenario by:
- higher RCS intensity & Main Injector power
 - an updated 2.4 MW scenario is in the works.
- RCS does not use Recycler Ring for stacking.
- higher rep. rate and RCS power.
Facility Capabilities (2mA CW + 2 GeV SR scenario)

2 GeV CW-capable beam, 2mA
- upgradeable to 4 MW shared with any pulsed 2 GeV program.

2 GeV pulsed beam from Storage Ring, ~1 MW
- requires laser stripping and 2 GeV Storage Ring.
- 37 e12 at 60-120 Hz.
- investigating ~400ns pulse compression.

8 GeV RCS program, 0.8 MW
- 37e12 every 20 Hz.
- 0.8 MW concurrent with 120 GeV program.
- upgradeable to ~2 MW with RCS ramp-rate and optics improvement.

120 GeV DUNE/LBNF program, 2.4 MW
- upgradeable to 4 MW with Main Injector ramp-rate.

120 GeV Slow-Extraction program, 8e12 over six second, once per min
- loss-limited, may be upgradeable.
Proposed Experiments

2 GeV CW-capable beam, 2mA
- mu2e-II type charged-lepton flavor violation experiment
- Low energy muon experiments (muonium, muon decay)
- REDTOP run-II/run-III program (rare-decays)
- neutron-antineutron oscillation experiments

2 GeV pulsed beam from Storage Ring, ~1 MW
- stopped pion source experiments
- dark matter search at GeV-scale
- PRISM charged-lepton flavor violation experiments

8 GeV RCS program, ~1 MW
- kaon decay-at-rest program
- dark matter search from intermediate energy protons
- proton irradiation facility
- any successors to short-baseline neutrino program
- NuSTORM and muon-collider R&D
- muon beam dump, missing muon momentum

120 GeV Slow-Extraction program, 8e12 over six second, once per min.
- dark matter spectrometer experiment
- muon missing-momentum experiment
- test beam program
RCS Design Parameters
The RCS would operate at 20 Hz and accelerate from 2 to 8 GeV. A second ring operating at 2 GeV is proposed to be located above the RCS and used to accumulate charge from the upgraded linac.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>RCS Circumference</td>
<td>570 m</td>
</tr>
<tr>
<td>RCS Rep. Rate</td>
<td>20 Hz</td>
</tr>
<tr>
<td>RCS Energy</td>
<td>8 GeV</td>
</tr>
<tr>
<td>RCS Intensity</td>
<td>37 e12</td>
</tr>
<tr>
<td>Number of Batches</td>
<td>5</td>
</tr>
<tr>
<td>Average Current</td>
<td>3 A</td>
</tr>
<tr>
<td>Available RCS Beam Power</td>
<td>0.8 MW</td>
</tr>
<tr>
<td>Min/Max Dipole</td>
<td>0.31-1 T</td>
</tr>
<tr>
<td>Min/Max Quadrupole Field</td>
<td>4.2-14 T/m</td>
</tr>
<tr>
<td>RF Freq. Range</td>
<td>50.3-52.8 MHz</td>
</tr>
<tr>
<td>Total RF Voltage</td>
<td>1.25 MV</td>
</tr>
<tr>
<td>No. cavities (60 kV)</td>
<td>21</td>
</tr>
<tr>
<td>Available RCS Beam Power</td>
<td>1.2 MW</td>
</tr>
<tr>
<td>Min/Max Quadrupole Field</td>
<td>1.9 MV</td>
</tr>
<tr>
<td>RF Freq. Range</td>
<td>32</td>
</tr>
</tbody>
</table>
Preliminary RCS Lattice Configurations

2 GeV Injection Ring, one of four periods

2 - 8 GeV RCS Ring, one of eight periods

2 GeV Ring Optimized for Injection

8 GeV Ring Optimized for Acceleration
H- Foil Stripping Injection
17 m straight.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>SR Circumference</td>
<td>570 m</td>
</tr>
<tr>
<td>SR Energy</td>
<td>2 GeV</td>
</tr>
<tr>
<td>Superperiodicity</td>
<td>4</td>
</tr>
<tr>
<td>Injection Insertion Length</td>
<td>12 m</td>
</tr>
<tr>
<td>Dipoles per Superperiod</td>
<td>12</td>
</tr>
<tr>
<td>Dipole Strength</td>
<td><0.4 T</td>
</tr>
</tbody>
</table>
Anti-Correlated Painted Injection

Injection painting scheme chosen to:
1) Minimize foil hits from the circulating beam.
2) Optimize stability of the beam distribution.
Scenario 1: Retrofit PIP-II linac to 5mA pulsed.

Scenario 2: Use six 120 Hz painting cycles to accumulate beam in storage ring every 20 Hz.
Summary

We have a self-consistent design for to 2.4 MW DUNE:
- 2 GeV upgrade of PIP-II + new 570m 8 GeV RCS.
- Upgrade is compatible with a wide range of proposed experiments.
- Accelerator design details are in paper and backup slides.

This specific scenario is unique for:
- does not require slip-stacking or Recycler.
- synergy with a 2 GeV accumulator ring.
- provides path to 4 MW upgrade of DUNE/LBNF.

The scenario also has options for being staged or scaled down.
- which beamlines should we plan to support?

Next Steps

Feedback on physics prioritization and experiment siting from Snowmass.

Further and more in-depth design is possible after CD-0.
Backup
Linac can be commissioned concurrent with PIP-II operations, RCS can be commissioned at partial linac energy, etc.

At ~1.2 GeV, the PIP-II Booster **1.2 MW** benchmark is crossed.
At ~1.6 GeV, we have **1.8 MW** without Main Injector RF upgrade.
 - If we can still use Recycler, RCS rep. rate only needs 10 Hz.
PIP-II Linac Upgrade to 2 GeV

<table>
<thead>
<tr>
<th>Linac Parameters</th>
<th>PIP-II Multi-users</th>
<th>with 2 GeV Upgrade</th>
</tr>
</thead>
<tbody>
<tr>
<td>Beam Energy</td>
<td>0.8</td>
<td>2.0</td>
</tr>
<tr>
<td>Ave. Beam Current</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Bunch Length</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>Min. Bunch Spacing</td>
<td>6.2</td>
<td>6.2</td>
</tr>
<tr>
<td>Max. H- per bunch</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>Beam Power</td>
<td>1.6</td>
<td>4</td>
</tr>
</tbody>
</table>

800 MeV – 1 GeV Beam

Future Upgrades
- RCS
 - LBNF Upgrade to 2.4 MW
 - 2 GeV storage ring
 - High power, low duty factor

E. Pozdeyev, 2020
Main Injector Operations

Keep 8 GeV injection into MI, re-using portions of Recycler as injection line
Removing slip stacking operation (Recycler) creates lower momentum spread in MI; helps to alleviate issues at crossing of transition energy

“Transition”: energy where revolution frequency is independent of momentum

Special optics manipulation at the transition energy (left; part of PIP-II) and smaller momentum spread provide adequate phase space through transition:

transition energy in
Main Injector ($\gamma = 21.5$)
Main Injector RF System

MI RF system would be upgraded with new modern RF cavity system

– increases RF power to meet final intensity requirements
– also enables increased ramp rate to achieve higher overall beam power above 2.4 MW

<table>
<thead>
<tr>
<th>RF System Specifications</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Frequency</td>
<td>52.617 — 53.104 MHz</td>
</tr>
<tr>
<td>Max. Acceleration Rate</td>
<td>240 GeV/s</td>
</tr>
<tr>
<td>Acceleration Voltage</td>
<td>2.7 MV</td>
</tr>
<tr>
<td>Peak Beam Power</td>
<td>7.1 MW</td>
</tr>
<tr>
<td>Average Beam Power</td>
<td>3.6 MW</td>
</tr>
<tr>
<td>Peak Voltage</td>
<td>4.8 MV</td>
</tr>
<tr>
<td>Average Beam Current</td>
<td>2.7 A</td>
</tr>
<tr>
<td>Fundamental RF Current</td>
<td>4.6-5.2 A</td>
</tr>
<tr>
<td>No. RF Stations required</td>
<td>31</td>
</tr>
</tbody>
</table>
Possible MI Upgrade for Higher Power Beyond 2.4 MW

Upgrade magnet power supply system to support higher ramp rate — reduce cycle time from ~1.5 s to about 0.9 s — factor of ~ 5/3

240 GeV/s → 600 GeV/s

I. Kourbanis
Some R&D Areas

High-Power Targets:
- neutrino target for DUNE/LBNF, designs for other experiments.

H- Stripping Laser Technology:
- anticipating progress at SNS, J-PARC, FNAL.

Conventional RF design:
- large frequency sweep, significant beam-loading, high-gradient

IOTA Technology:
- innovations in electron lens and nonlinear optics.

Ceramic beampipes:
- reliability and cost for ceramics, metallization, brazed-flanges.
Space-charge Tune-spread Losses:

If we go to higher than PIP-II intensity, but without a momentum separation between the beams, we will cross the same res. lines.

How well can we compensate the resonances lines?
Recycler Intensity Challenges

Tight Aperture Losses:
Aperture limits RCS normalized emittance

Electron Cloud Instability:

S. Antipov et al. PRSTAB 2017
Slip-stacking Accumulation

1: An off-momentum batch is injected ...

2: Slipping motion causes batches to gradually overlap ...

3: Subsequent batch injections are made ...

4: Beams are accelerated as one after accumulation is complete.

RF frequency separation:
\[\Delta f = h_{RCS} f_{RCS} \]
\[\Delta f = \left(h_{Booster} \frac{C_{RCS}}{C_{Booster}} \right) f_{RCS} \]

Momentum separation:
\[\Delta \delta = \frac{\Delta f}{f_{rev} h \eta} \]
2.4 MW with Slip-stacking

Conventional Stacking:

Slip-stacking: