

Managed by Fermi Research Alliance, LLC for the U.S. Department of Energy Office of Science

An Upgrade Path toward Multi-MW Beam Power at Fermilab

Jeffrey Eldred NuFACT 2021 September 6th 2021

Fermilab Upcoming Upgrades Now 750kW

Fermilab Accelerator Complex

Fermilab Upcoming Upgrades PIP-II 1.2MW

Beam Power and Detector Size

DUNE long-baseline neutrino program calls for 2.4 MW

4 Jeffrey Eldred | An Upgrade Path toward Multi-MW Beam Power at Fermilab

DUNE Physics, with 2.4 MW at 6 years

5 Jeffrey Eldred | An Upgrade Path toward Multi-MW Beam Power at Fermilab

Fermilab Upcoming Upgrades Future 2.4MW

6 Jeffrey Eldred | An Upgrade Path toward Multi-MW Beam Power at Fermilab

2.4 MW Upgrade: Build RCS and/or Linac to 8 GeV

How we get to 2.4 MW will set the stage for the future of Fermilab!

7 Jeffrey Eldred | An Upgrade Path toward Multi-MW Beam Power at Fermilab

9/8/2021

🛟 Fermilab

8 GeV Linac Option

Rapid-Cycling Synchotron (RCS) Option

Upgrade Design History & Process

In 2008, Project X: 8 GeV SRF Linac, directly into Main Injector.

In 2010, Project X ICD-2: 2 GeV Linac, New 2-8 GeV RCS.

In 2018, <u>S. Nagaitsev and V. Lebedev</u>: updated version of ICD-2.

In 2019, J. Eldred, V. Lebedev, A. Valishev: parametric study of RCS design.

The RCS path to multi-MW are well-considered, design requirements are needed.

In 2020, Committee for Fermilab Booster Upgrade an integrated design effort:

- Science Working Group (R. Harnik & about 25-75 people)

- Accelerator Working Group (M. Syphers & about 25 people)

We have been asked to develop a scenario to present to the Fermilab directorate and to present on Fermilab's behalf for Snowmass.

🛠 Fermilab

9/8/2021

However, this design team does not represent any decision at higher levels.

2 GeV Linac + RCS Scenario:

- Accelerator Working Group paper recent ArXiv paper.
- Science Working Group paper mostly complete, still open.

10 Jeffrey Eldred | An Upgrade Path toward Multi-MW Beam Power at Fermilab

R. Harnik, 2020

Document Preview:

Physics Opportunities for the Fermilab Booster Replacement

Physics task force

November 27, 2020

Abstract

This is a menu of physics opportunities afforded by the Fermilab Booster Replacement and its various options. As in any self-respecting fancy restaurant, there are no prices in the menu.

overleaf.com/read/scgtzvbngfxr

1	Introduction - Physics Opportunities for Booster Replacement	2
2	Charged lepton flavor violation in muon to electron conversion	3
3	Charged lepton flavor violation with muon decays	6
4	Fixed-Target Searches for New Physics with $\mathcal{O}(1~{\rm GeV})$ Proton Beam Dumps	8
5	Fixed-Target Searches for New Physics with $\mathcal{O}(10 \text{ GeV})$ Proton Beams at Fermi National Accelerator Laboratory	14
6	Kaons Decay at Rest	19
7	High Energy Proton Fixed Target	21
8	Electron missing momentum	23
9	Nucleon Electromagnetic Form Factors from Lepton Scattering	25
10	Electron beam dumps	29
11	Muon Missing Momentum	32
12	Muon Beam Dump	35
13	Physics with Muonium	37
14	Muon Collider R&D and Neutrino Factory	40
15	Rare Decays of Light Mesons	43
16	Neutron-Antineutron Oscillations	46
17	Proton Storage Ring: EDM and Axion Searches	48
18	Tau Neutrinos	49
19	Proton Irradiation Facility	53
20	Test-beam Facility	55

Contents

11 Jeffrey Eldred | An Upgrade Path toward Multi-MW Beam Power at Fermilab

.

	Dark Sectors	v Physics	CLFV	Precision tests	R&D
Charged lepton flavor violation: muon to electron conversion					
Charged lepton flavor violation with muon decays					
Stopped Pion Source					
Kaons Decay at Rest					
DM searches with Intermediate Energy Protons					
High Energy Proton Fixed Target					
Electron missing momentum					
Nucleon Electromagnetic Form Factors from Lepton Scattering					
Electron beam dumps					
Muon Missing Momentum					
N-Nbar oscillations					
Muon Collider R&D and Neutrino Factories					
Tau Neutrinos					
Rare Decays of Light Mesons					
Proton Irradiation Facility					
Proton Storage Ring: EDM and Axion Searches					
Test-beam Facility					
Physics with Muonium					
Muon Beam Dump					

12 Jeffrey Eldred | An Upgrade Path toward Multi-MW Beam Power at Fermilab

9/8/2021

‡ Fermilab

Proposed Experiments

2 GeV CW-capable beam, 2mA

- mu2e-II type charged-lepton flavor violation experiment
- Low energy muon experiments (muonium, muon decay)
- REDTOP run-II/run-III program (rare-decays)
- neutron-antineutron oscillation experiments

2 GeV pulsed beam from Storage Ring, ~1 MW

- stopped pion source experiments
- dark matter search at GeV-scale
- PRISM charged-lepton flavor violation experiments

8 GeV RCS program, ~1 MW

- kaon decay-at-rest program
- dark matter search from intermediate energy protons
- proton irradiation facility
- any successors to short-baseline neutrino program
- NuSTORM and muon-collider R&D
- muon beam dump, missing muon momentum

120 GeV Slow-Extraction program, 8e12 over six second, once per min.

🚰 Fermilab

9/8/2021

- dark matter spectrometer experiment
- muon missing-momentum experiment
- test beam program

13 Jeffrey Eldred | An Upgrade Path toward Multi-MW Beam Power at Fermilab

I) Assume PIP-II proceeds according to current plans.

II) Scenario should enable the Main Injector to achieve the 2.4 MW at 120 GeV for DUNE/LBNF in the near term.

- and for a 60 GeV MI cycle, at least 2 MW.

III) Scenario should allow a robust experimental program and enable future high-power upgrades.

IV) Identify topics which may require R&D.

Linac + RCS Scenario

At 2 GeV injection energy, space-charge is manageable for ~37e12 RCS,

- For 20 Hz rep. rate, the beam can be stacked directly into Main Injector.
- If we stack directly into MI, there will be extra cycles for 8 GeV program.
- **Sidebar:** Whether it would be possible/preferable to get to 2.4 MW with a Recycler-like 8-GeV storage ring is hotly debated.

At 2 mA linac injection current, long injection time becomes an issue for high-intensity, fast-ramping RCS.

Solution 1: Retrofit PIP-II linac for 5-10 mA pulses, 0.6-1.2 ms injection.

- This strategy has strong precedents at other facilities (SNS, J-PARC)
- If that retrofit were to take place earlier, would benefit PIP-II Booster.

Solution 2: Create 2 GeV storage ring for injection, transfer to RCS.

- Allows dedicated injection optics and longer accumulation time.
- With a subsequent laser stripping update, allows additional opportunity for MW-class pulsed 2 GeV proton program (capability overlaps with SNS).

Path to 4 MW Main Injector, by upgrade MI ramp rate & second target hall

🛠 Fermilab

High-Level Parameters of Possible Upgrade Scheme

Parameter	PIP-II	RCS
Linac Energy	$0.8 \mathrm{GeV}$	$2 { m GeV}$
Linac Current	2 mA	2 mA
RCS Energy	$8 { m GeV}$	$8 { m GeV}$
RCS Intensity	6.5 e12	37 e12
RCS Rep. Rate	20 Hz	20 Hz
Number of Batches	12	5
Available RCS Power	$0.08 \; \mathrm{MW}$	$0.8 \ \mathrm{MW}$
Main Injector Intensity	80 e12	185 e12
Main Injector Cycle Time	$1.2 \mathrm{~s}$	1.4 s
Main Injector Power (120 GeV)	$1.2 \mathrm{MW}$	$2.4 \mathrm{MW}$
Ultimate Main Injector Power	$1.2 \ \mathrm{MW}$	$4.0 \ \mathrm{MW}$

9/8/2021

16 Jeffrey Eldred | An Upgrade Path toward Multi-MW Beam Power at Fermilab

High-Level Parameters of Possible Upgrade Scheme

Parameter	PIP-II	RCS	ICD-2
Linac Energy	$0.8 \mathrm{GeV}$	$2 { m GeV}$	$2 { m GeV}$
Linac Current	2 mA	2 mA	2 mA
RCS Energy	$8 { m GeV}$	$8 { m GeV}$	$8 { m GeV}$
RCS Intensity	6.5 e12	37 e12	26 e12
RCS Rep. Rate	20 Hz	20 Hz	10 Hz
Number of Batches	12	5	5
Available RCS Power	$0.08 \; \mathrm{MW}$	$0.8 \ \mathrm{MW}$	$0.2 \ \mathrm{MW}$
Main Injector Intensity	80 e12	$185~\mathrm{e}12$	125 e12
Main Injector Cycle Time	1.2 s	$1.4 \mathrm{~s}$	$1.2 \mathrm{~s}$
Main Injector Power (120 GeV)	$1.2 \ \mathrm{MW}$	$2.4 \ \mathrm{MW}$	$2.0 \ \mathrm{MW}$
Ultimate Main Injector Power	$1.2 \ \mathrm{MW}$	$4.0 \ \mathrm{MW}$	$2.8 \ \mathrm{MW}$

Differs from ICD-2 scenario by:

- higher RCS intensity & Main Injector power
 - an updated 2.4 MW scenario is in the works.
- RCS does not use Recycler Ring for stacking.
- higher rep. rate and RCS power.

17 Jeffrey Eldred | An Upgrade Path toward Multi-MW Beam Power at Fermilab

Facility Capabilties (2mA CW + 2 GeV SR scenario)

2 GeV CW-capable beam, 2mA

- upgradeable to 4 MW shared with any pulsed 2 GeV program.

2 GeV pulsed beam from Storage Ring, ~1 MW

- requires laser stripping and 2 GeV Storage Ring.
- 37 e12 at 60-120 Hz.
- investigating ~400ns pulse compression.

8 GeV RCS program, 0.8 MW

- 37e12 every 20 Hz.
- 0.8 MW concurrent with 120 GeV program.
- upgradeable to ~2 MW with RCS ramp-rate and optics improvement.

120 GeV DUNE/LBNF program, 2.4 MW

- upgradeable to 4 MW with Main Injector ramp-rate.

120 GeV Slow-Extraction program, 8e12 over six second, once per min

🔁 Fermilab

9/8/2021

- loss-limited, may be upgradeable.

Proposed Experiments

2 GeV CW-capable beam, 2mA

- mu2e-II type charged-lepton flavor violation experiment
- Low energy muon experiments (muonium, muon decay)
- REDTOP run-II/run-III program (rare-decays)
- neutron-antineutron oscillation experiments

2 GeV pulsed beam from Storage Ring, ~1 MW

- stopped pion source experiments
- dark matter search at GeV-scale
- PRISM charged-lepton flavor violation experiments

8 GeV RCS program, ~1 MW

- kaon decay-at-rest program
- dark matter search from intermediate energy protons
- proton irradiation facility
- any successors to short-baseline neutrino program
- NuSTORM and muon-collider R&D
- muon beam dump, missing muon momentum

120 GeV Slow-Extraction program, 8e12 over six second, once per min.

🚰 Fermilab

9/8/2021

- dark matter spectrometer experiment
- muon missing-momentum experiment
- test beam program

19 Jeffrey Eldred | An Upgrade Path toward Multi-MW Beam Power at Fermilab

RCS Design Parameters

20 Jeffrey Eldred | An Upgrade Path toward Multi-MW Beam Power at Fermilab

Rapid Cycling Synchrotron (RCS)

The RCS would operate at 20 Hz and accelerate from 2 to 8 GeV A second ring operating at 2 GeV is proposed to be located above the RCS and used to accumulate charge from the upgraded linac.

Parameter	Value	
RCS Circumference	570 m	
RCS Rep. Rate	20 Hz	$30 \mathrm{Hz}$
RCS Energy	$8 { m GeV}$	
RCS Intensity	37 e12	
Number of Batches	5	
Average Current	3 A	
Available RCS Beam Power	$0.8 \ \mathrm{MW}$	$1.2 \mathrm{MW}$
Min/Max Dipole	0.31-1 T	
Min/Max Quadrupole Field	4.2-14 T/m	
RF Freq. Range	50.3-52.8 MHz	
Total RF Voltage	$1.25 \mathrm{MV}$	1.9 MV
No. cavities (60 kV)	21	32

21 Jeffrey Eldred | An Upgrade Path toward Multi-MW Beam Power at Fermilab

🚰 Fermilab

Preliminary RCS Lattice Configurations

2 GeV Injection Ring, one of four periods

2 - 8 GeV RCS Ring, one of eight periods

2 GeV Ring Optimized for Injection

8 GeV Ring Optimized for Acceleration

🛛 🛟 Fermilab

22 Jeffrey Eldred | An Upgrade Path toward Multi-MW Beam Power at Fermilab

Beam Accumulation and H- Stripping in a Storage Ring

23 Jeffrey Eldred | An Upgrade Path toward Multi-MW Beam Power at Fermilab 9/8/2021

2

4

🛟 Fermilab

GeV

Anti-Correlated Painted Injection

Anti-correlated Painting Injection

Circulating orbit relative to injection orbit

Injection painting scheme chosen to:

) Minimize foil hits from the circulating beam.

2) Optimize stability of the beam distribution.

Beam Accumulation and H- Stripping in a Storage Ring

Scenario 1: Retrofit PIP-II linac to 5mA pulsed.

Scenario 2: Use six 120 Hz painting cycles to accumulate beam in storage ring every 20 Hz.

25 Jeffrey Eldred | An Upgrade Path toward Multi-MW Beam Power at Fermilab

9/8/2021

🛟 Fermilab

Summary

We have a self-consistent design for to 2.4 MW DUNE:

- 2 GeV upgrade of PIP-II + new 570m 8 GeV RCS.
- Upgrade is compatible with a wide range of proposed experiments.
- Accelerator design details are in paper and backup slides.

This specific scenario is unique for:

- does not require slip-stacking or Recycler.
- synergy with a 2 GeV accumulator ring.
- provides path to 4 MW upgrade of DUNE/LBNF.

The scenario also has options for being staged or scaled down.

- which beamlines should we plan to support?

Next Steps

Feedback on physics prioritization and experiment siting from Snowmass.

Further and more in-depth design is possible after CD-0.

27 Jeffrey Eldred | An Upgrade Path toward Multi-MW Beam Power at Fermilab

Staging RCS with partial upgrade of Linac & MI

Linac can be commissioned concurrent with PIP-II operations, RCS can be commissioned at partial linac energy, etc.

At ~1.2 GeV, the PIP-II Booster 1.2 MW benchmark is crossed. At ~1.6 GeV, we have 1.8 MW without Main Injector RF upgrade.

- If we can still use Recycler, RCS rep. rate only needs 10 Hz.

28 Jeffrey Eldred | An Upgrade Path toward Multi-MW Beam Power at Fermilab

PIP-II Linac Upgrade to 2 GeV

29 Jeffrey Eldred | An Upgrade Path toward Multi-MW Beam Power at Fermilab

Main Injector Operations

Keep 8 GeV injection into MI, re-using portions of Recycler as injection line Removing slip stacking operation (Recycler) creates lower momentum spread in MI; helps to alleviate issues at crossing of transition energy

Main Injector RF System

MI RF system would be upgraded with new modern RF cavity system

- increases RF power to meet final intensity requirements
- also enables increased ramp rate to achieve higher overall beam power above 2.4 MW

RF System Specifications		
Frequency	52.617 — 53.104	MHz
Max. Acceleration Rate	240	GeV/s
Acceleration Voltage	2.7	MV
Peak Beam Power	7.1	MW
Average Beam Power	3.6	MW
Peak Voltage	4.8	MV
Average Beam Current	2.7	Α
Fundamental RF Current	4.6-5.2	Α
No. RF Stations required	31	

Possible MI Upgrade for Higher Power Beyond 2.4 MW

32 Jeffrey Eldred | An Upgrade Path toward Multi-MW Beam Power at Fermilab

Some R&D Areas

High-Power Targets:

- neutrino target for DUNE/LBNF, designs for other experiments.

H- Stripping Laser Technology:

- anticipating progress at SNS, J-PARC, FNAL.

Conventional RF design:

- large frequency sweep, significant beam-loading, high-gradient

IOTA Technology:

- innovations in electron lens and nonlinear optics.

Ceramic beampipes:

- reliability and cost for ceramics, metallization, brazed-flanges.

Recycler Intensity Challenges

Space-charge Tune-spread Losses:

If we go to higher than PIP-II intensity, but without a momentum separation between the beams, we will cross the same res. lines.

How well can we compensate the resonances lines?

34 Jeffrey Eldred | An Upgrade Path toward Multi-MW Beam Power at Fermilab

9/8/2021

🚰 Fermilab

Recycler Intensity Challenges

Tight Aperture Losses:

Aperture limits RCS normalized emittance

Electron Cloud Instability:

Slip-stacking Accumulation

RF frequency separation:

$$\Delta f = h_{\rm RCS} f_{\rm RCS}$$
$$\Delta f = \left(h_{\rm Booster} \frac{C_{\rm RCS}}{C_{\rm Booster}} \right) f_{\rm RCS}$$

Momentum separation:

$$\Delta \delta = \frac{\Delta f}{f_{rev} h\eta}$$

2.4 MW with Slip-stacking

37 Jeffrey Eldred | An Upgrade Path toward Multi-MW Beam Power at Fermilab