Polystyrene based plastic scintillator production process involving Additive Manufacturing

Umut KOSE (CERN) on behalf of 3DET Collaboration
NUFACT 2021, 6-11 September 2021, Cagliari, ITALY
Why Additive Manufacturing?

- Plastic scintillator detectors can be found in a wide variety of scientific and industrial applications: for tracking and calorimetry in high energy physics, for diagnostic imaging in medicine, for beam monitoring in hadron therapy, and for many security applications.

- In the last years more and more experiments started to develop massive plastic scintillator detectors with complex geometries; such as neutrino active targets, fine grained calorimetry, neutron detectors, etc.

- Not easy to build and assemble these detectors with standard techniques involving subtractive processes. Additive Manufacturing technique may be a viable and cheap solution.
The 3DET Collaboration

• The 3D printed DETector (3DET) collaboration aims at investigating and developing additive manufacturing as a new production technique for future scintillator particle detectors

• General purpose R&D towards the first 3D printed particle detector with performances comparable to the state of the art

• 3DET composes of CERN, ETH Zurich, HEIG-VD, ISMA

• The collaboration can profit of expertise in particle detector development, scintillator materials and additive manufacturing

• Contact Person: Davide Sgalaberna (davide.sgalaberna@cern.ch)
 Technical Coordinator: Umut Kose (umut.kose@cern.ch)
Benchmark of 3D printing model

Aim to 3D print simultaneously many optically-independent plastic scintillator volumes

Need a technology that can:
• Achieve good scintillation performance and high transparency in the scintillator core
• 3D print big volumes in relatively short time
• Robust (and relatively cheap)
• 3D print simultaneously more materials

An example case study to apply AM techniques

U. KOSE, NUFAC2021, Cagliari, Italy
Fused deposition modelling, FDM, is very well established and the most widely used additive manufacturing technique:

- Versatile in application,
- Rapid prototyping of specific shape and pattern,
- Cost effectiveness
- Multi material

Fused Deposition Modeling is a promising solution
The scintillator filament

Requirements:
• Transparency
• Dimensional uniformity
• Uniform distributions of the scintillation additives
• Flexibility: by adding plasticizer to polystyrene

Optimal composition is **polystyrene + pTP + POPOP** with a 5% biphenyl as plasticizer

U. KOSE, NUFACT2021, Cagliari, Italy
The proof of concept

The outermost surface is always opaque. Characteristic of FDM

Results confirmed with PMT on Cs137 source (with reflector envelope)

MPPC coupled directly with scintillator cube in black connector (no white reflector envelope)

U. KOSE, NUFACT2021, Cagliari, Italy
The proof of concept

The outermost surface is always opaque. Characteristic of FDM

A novel polystyrene-based scintillator production process involving additive manufacturing

S. Berns et al 2020 JINST 15 P10019

a Haute Ecole Specialisee de Suisse Occidentale (HES-DO), CH-2800 Delémont, Route de Moutier 14, Switzerland
b Haute Ecole d’Ingénierie du canton de Vaud (HEIG-VD), CH-1401 Yverdon-les-Bains, Route de Cheseaux 1, Switzerland
c COMATEC-AddiPole, CH-1450 Sainte-Croix, Technopole de Sainte-Croix, Rue du Progrès 31, Switzerland
d Institute for Scintillation Materials NAS of Ukraine (ISMA), Kharkiv 61072, Ukraine
* European Organization for Nuclear Research (CERN), 1211 Geneva 23, Switzerland
* Now at ETH Zurich, Institute for Particle Physics and Astrophysics, CH-8093 Zurich, Switzerland

Scintillation light yield comparable with the one of standard production techniques

U. KOSE, NUFACT2021, Cagliari, Italy
The attenuation length

Long bar sample 10 mm x 10 mm x 50mm

The printing parameters have to be carefully tuned to achieve the required transparency and light output
- After improving the printing parameters, an acceptable attenuation length was obtained
The attenuation length

In order to precisely quantify the attenuation length of the 3D printed scintillator, we obtained a sample after some improvements of the printing parameters

- The 3D-printed sample (10 mm x 10 mm x 50 mm) was polished on the outermost surface
- SiPM directly coupled on one end and Sr\(^{90}\) source moving at different positions

- The scintillator is pretty transparent
- Sparse presence of small air bubbles
- Future improvements may be achieved by fine tuning the printing parameters in order to obtain a higher fill factor

Attenuation length of ~20 cm obtained
Acceptable for detectors with fine segmentation
3D printing of the optical reflector

Polymer pellets + Reflective pigment TiO2 (or BaSO4, MgO...) \rightarrow Reflective filament

Similar reflectivity to TiO2 paint but less than Tyvek and PTFE (no air gap, low reflection, surface roughness)

PRELIMINARY

<table>
<thead>
<tr>
<th>Sample</th>
<th>Reflection ($\lambda=420$ nm), %</th>
</tr>
</thead>
<tbody>
<tr>
<td>PTFE</td>
<td>100</td>
</tr>
<tr>
<td>Tyvek</td>
<td>94</td>
</tr>
<tr>
<td>Reflective paint</td>
<td>93</td>
</tr>
<tr>
<td>3d-printing</td>
<td>91</td>
</tr>
</tbody>
</table>

U. KOSE, NUFAC2021, Cagliari, Italy
The 3D-printed scintillator matrix

Succeeded to 3D print a matrix of optically-isolated scintillator cubes

Matrix configuration:
- 10 mm cube edge
- 1 mm reflector thickness

- Outermost surface not very precise due to the melting of the material at high temperatures
 - Not a big concern, as long as the inner part provides good performance
- Tolerance of reflector thickness and cube shape ~0.5 mm
- Some reflector remnants in scintillator (extruder couldn’t move up/down before changing material)

U. KOSE, NUFAC2021, Cagliari, Italy
The 3D-printed scintillator matrix

- 3D-printed matrix covered with white teflon and coupled directly to SiPM
- Cosmics are triggered with another matrix of cubes (standard production)
- Preliminary tests are promising:
 - Measured light output: ~45 p.e.
 - Crosstalk probability ~ 2%
- Complementary tests with Cs137 show light output similar to injection molding with TiO\textsubscript{2} reflector
Future plans

• We demonstrated the feasibility of 3D printing plastic scintillator detectors, both the scintillator and the optical reflector, with the Fused Deposition Modelling

• More R&D is needed to further improve the 3D matrix
 • Geometrical tolerance and transparency

• Future tests will aim at measuring time resolution of 3D printed sample and ageing effects

• Work on going also on 3D printing of inorganic materials (not reported in this talk)

• Plan to investigate other additive manufacturing technologies to overcome the weaknesses of Fused Deposition Modelling
Thank you

If you are interested to collaborate with 3DET collaboration please get in contact with: Davide.Sgalaberna@cern.ch Umut.Kose@cern.ch