Combined ν_{μ} and $\bar{\nu}_{\mu}$ CC0 π Cross Section Measurement in the T2K Near Detector Complex

NuFact 2021, Cagliari, Italy 09.September.2021

The T2K Experiment

- Long-baseline neutrino oscillation experiment
- $\nu_{\mu} \rightarrow \nu_{\mu} / \overline{\nu}_{\mu} \rightarrow \overline{\nu}_{\mu}$ disappearance and $\nu_{\mu} \rightarrow \nu_{e} / \overline{\nu}_{\mu} \rightarrow \overline{\nu}_{e}$ appearance
- First experiment to use off-axis technique

Cross Section Measurements at T2K

Source [%]	$ u_{\mu}$	$ u_{e}$	$\nu_{\rm e}\pi^+$	$ar{ u}_{\mu}$	$ar{ u}_e$
ND280-unconstrained cross section	2.4	7.8	4.1	1.7	4.8
Flux & ND280-constrained cross sec.	3.3	3.2	4.1	2.7	2.9
SK detector systematics	2.4	2.9	13.3	2.0	3.8
Hadronic re-interaction	2.2	3.0	11.5	2.0	2.3
Total	5.1	8.8	18.4	4.3	7.1

 \bullet Errors on SK reduced from: $\sim 15\%$ to $\sim 5\%$

Phys. Rev. Lett. 121, 171802, 2018 arXiv:1807.07891

- Different flux, target and acceptance for near and far detectors
- Φ_{ν} , σ constrained by near detector \rightarrow reduce far detector systematics
- Interaction cross section uncertainty is dominant one for oscillation analysis
- Need for reliable model and better understanding of neutrino interactions
 - Neutrino physics is entering high precision era

• Joint ν_{μ} / $\overline{\nu}_{\mu}$ cross section measurement on carbon

• Charged current with zero pions in the final state

• Joint ν_{μ} / $\overline{\nu}_{\mu}$ cross section measurement on carbon

• Charged current with zero pions in the final state

Joint ν_{μ} / $\overline{\nu}_{\mu}$ cross section measurement

- $\nu_{\mu}/\bar{\nu}_{\mu}$ cross sections differ by sign of axial-vector interference term
- Multinucleon excitations enter in this term
 - These can be tested by taking the difference between ν and $\bar{\nu}$ cross sections
- CP violation analyses measure the asymmetry between $\nu/\bar{\nu}$ oscillations
 - Important to account for neutrino-nucleus interaction asymmetry

$$\frac{d^2\sigma}{d\cos\theta d\omega} = \frac{G_F^2 \cos^2\theta_c}{\pi} |\mathbf{k}'| E_l' \cos^2\frac{\theta}{2} \left[\frac{(\mathbf{q}^2 - \omega^2)^2}{\mathbf{q}^4} G_E^2 R_{\tau}(\mathbf{q}, \omega) + \frac{\omega^2}{\mathbf{q}^2} G_A^2 R_{\sigma\tau(L)}(\mathbf{q}, \omega) + 2 \left(\tan^2\frac{\theta}{2} + \frac{\mathbf{q}^2 - \omega^2}{2\mathbf{q}^2} \right) \left(G_M^2 \frac{\mathbf{q}^2}{4M_N^2} + G_A^2 \right) R_{\sigma\tau(T)}(\mathbf{q}, \omega) + 2 \frac{E_{\nu} + E_l'}{M_N} \tan^2\frac{\theta}{2} G_A G_M R_{\sigma\tau(T)}(\mathbf{q}, \omega) \right]$$

Joint ν_{μ} / $\overline{\nu}_{\mu}$ cross section measurement

- Simultaneous fit to ν_{μ} / $\overline{\nu}_{\mu}$ events (off-axis only)
- MC overestimates cross section in forward direction at medium momentum
- MC underestimation in for high angles and low momentum
- No model describes the data well

Phys. Rev. D 101, 112001 (2020) https://doi.org/10.1103/PhysRevD.101.112001

 $0.98 < \cos \theta_{\rm u}^{\rm true} < 1.0$

• Joint ν_{μ} / $\bar{\nu}_{\mu}$ cross section measurement on carbon

• Charged current with zero pions in the final state

Signal Definition

Interaction Topologies
What we measure

- Underlying interaction is obfuscated by nuclear effects and final state interactions
- Need model independent samples using final state signals
 - CC0 π : 1 muon, 0 pions
 - most CCQE-like signal (most important channel for T2K)
- Increased detector acceptance of signal

Cross Section Extraction

• Joint ν_{μ} / $\bar{\nu}_{\mu}$ cross section measurement on carbon

• Charged current with zero pions in the final state

The Near Detectors ||||| OA 0.0° $\Phi_{\nu_{\mu}}^{295km}\left(A.U.\right)$ **////** OA 2.0° ₩ OA 2.5° Downstream Solenoid Coil **Barrel ECAL** P₀D E_v (GeV) ECAL 280m beam detectors off-axis dump 2.5° target decay station muon on-axis Super-Kamiokande pipe monitors

0m

280m

110m 120m

295km

- ND280: the off-axis near detector
- Situated 280 m from the target station
- Fully magnetized detector
 - Can differentiate between $\nu/\overline{\nu}$
- 2 fine-grained detectors (FGDs) act as target for neutrinos
- 3 argon time projection chambers (TPCs) act as tracker and measure particle momentum and charge
- Detector encased in electromagnetic calorimeters (Ecals)
- Goals: Measure unoscillated neutrino spectrum and neutrino-nucleus cross sections

- INGRID: the on-axis detector
- Consists of 14 identical modules arranged in a cross
- Each module consists of sandwiched iron plates and tracking scintillator plates
- Goals: measure neutrino beam profile and neutrinonucleus cross sections

- Study cross section as a function of neutrino energy
- Measured ν interaction rate is product of flux and cross section \rightarrow Degeneracy
- Difference in flux at the 2 near detectors can break this degeneracy
- Fluxes between detectors are correlated \rightarrow Reduction of the flux uncertainty in the analysis
- Important step towards planned future multi-axis measurements with Hyper-K, DUNE

Event Selection

• Strategy: define multiple samples and bin events in outgoing muon momentum and angle

Event Selection - Improvements

- Very similar purity for previous and improved selection
- But efficiency is greatly improved for high angle and backwards going tracks

Summary

- Joint measurements are the future of T2K's cross section group
- First doubly-joint cross section measurement at T2K is being completed
 - Multiple detectors
 - ν_{μ} and $\overline{\nu}_{\mu}$
- Working on minimizing model dependence and gain better handle on systematic uncertainties
- So far, all theoretical models hard pressed to accurately predict multiple data sets
- Further improvements from upgrade of ND280 planned in 2022

THANK YOU!