Exhaustive Neural Importance Sampling applied to Monte Carlo event generation

NuFact 2021

Sebastian Pina-Otey*, Federico Sánchez,

Thorsten Lux and Vicens Gaitan

September 8, 2021

NuFact 2021: Exhaustive Neural Importance Sampling applied to Monte Carlo event generation

Institut de Física

d'Altes Energies

Sebastian Pina-Otey

Contents

- 2 Normalizing Flows
- 3 Exhaustive neural importance sampling
- 4 Cross section example

Contents

- 2 Normalizing Flows
- 3 Exhaustive neural importance sampling
- 4 Cross section example

Rejection sampling

- A numerical method for sampling from an analytical PDF.
- Samples generated via a similar proposal function *q* (x), a PDF which can be both evaluated and sampled from.
- Proposal function multiplied by a constant $k \ge 1$ such that $p(\mathbf{x}) \le k \cdot q(\mathbf{x})$, $\forall \mathbf{x}$.
- $x \sim q(\mathbf{x})$ is accepted with probability $p(\mathbf{x}) / (k \cdot q(\mathbf{x}))$.

Goal

Find suitable proposal $q(\mathbf{x})$ for rejection sampling for better efficiency.

Main issues

- Designing a suitable proposal function can be very costly in human time.
- 2. Generic proposal functions, e.g. a uniform distribution, makes the algorithm usually very inefficient.
- 3. The inefficiency grows rapidly with the number of dimensions.

Normalizing flows proposal

- 1. Adapts to a given target density automatically.
 - Barely human time cost.
 - Good acceptance efficiency.
- 2. Grows properly with the number of dimensions.
- 3. Produces exact samples through rejection sampling.

Contents

1 Motivation

2 Normalizing Flows

3 Exhaustive neural importance sampling

4 Cross section example

Normalizing flows

- Define a transformation T_{\u03c6} from a complex target density q_{\u03c6}(x) to a simple base density f(u):
 - $u=T_{\phi}(x).$
- T_{ϕ} is invertible and differentiable, and satisfies: $q_{\phi}(x) = f(T_{\phi}(x)) |\det J_{T}(x)|$

- f(u) can be evaluated and sampled from.
- T_{ϕ} allows to sample and evaluate from $q_{\phi}(x)$ using f(u) via T_{ϕ}^{-1} .
- Example of transforming from f(u)Gaussian to $q_{\phi}(x)$ in star shape.

Standard problem and objective function

- Standard problem: Given data $x \sim p(x)$, find $q_{\phi}(x) \approx p(x)$ with only samples.
- How? Minimizing the Kullback-Leibler divergence:

$$D_{\mathsf{KL}}(p(x) \| q_{\phi}(x)) = \int p(x) \log \left(\frac{p(x)}{q_{\phi}(x)} \right) dx.$$

$$\underset{\phi}{\operatorname{arg\,min}} D_{\mathsf{KL}}(p(x) \| q_{\phi}(x)) = \underset{\phi}{\operatorname{arg\,min}} - \int p(x) \log q_{\phi}(x) \, dx$$
$$\approx \underset{\phi}{\operatorname{arg\,max}} \sum \log q_{\phi}(x) \text{ with } x \sim p(x).$$

Contents

1 Motivation

- 2 Normalizing Flows
- 3 Exhaustive neural importance sampling
- 4 Cross section example

Modifying Neural Importance Sampling

- To minimize $D_{\text{KL}}(p(\mathbf{x}) \| q_{\phi}(\mathbf{x}))$, Müller et al. (1808.03856) propose to use the gradient $\frac{1}{N} \sum_{i=1}^{N} w(\mathbf{x}_{i}) \nabla_{\phi} \log q_{\phi}(\mathbf{x}_{i}), \ \mathbf{x}_{i} \sim q_{\phi}(\mathbf{x}_{i}) \text{ and } w(\mathbf{x}_{i}) = \frac{p(\mathbf{x}_{i})}{q_{\phi}(\mathbf{x}_{i})}.$ (1)
- We propose to additionally redefine the target density with a background (e.g., uniform):

$$p_{\text{target}}\left(\mathbf{x}\right) = (1 - \alpha) \cdot p\left(\mathbf{x}\right) + \alpha \cdot p_{\text{bg}}\left(\mathbf{x}\right).$$

Aim:

- Improve initial training, ensuring the full support of $p(\mathbf{x})$ (better than randomly initialized NF).
- Ensure exhaustive coverage of the phase space.

ENIS general scheme

Contents

1 Motivation

- 2 Normalizing Flows
- 3 Exhaustive neural importance sampling

4 Cross section example

CCQE cross section

 Charged-Current Quasi-Elastic (CCQE) interaction:

 $u_l + n
ightarrow l^- + p$ $\bar{\nu}_l + p
ightarrow l^+ + n$

- Cross section is the probability of a specific process taking place:
 - Cross section of a CCQE interaction.

True vs proposal 1D

Original target in blue.NF proposal in orange.

True vs proposal 2D

Weights $w_q(x) = p(x)/q_{\phi}(x)$ distributions for rejection sampling

Coverage and weight distribution

Coverage

■ To perform rejection sampling, we need

 $\boldsymbol{k} \cdot \boldsymbol{q}(\mathbf{x}) \geq \boldsymbol{p}(\mathbf{x}) \quad \forall \ \mathbf{x} : \boldsymbol{p}(\mathbf{x}) > 0.$

- Relax k with Q-quantile of weights $p(\mathbf{x})/q_{\phi}(\mathbf{x}) w_{Q}$, denoted by $k_{Q} = (Q$ -quantile $(w))^{-1} = w_{Q}^{-1}$, to improve p_{accept} .
- Define coverage with the new k_Q : Coverage = $\frac{\sum_{i=1}^{N} W'(\mathbf{x}_i)}{\sum_{i=1}^{N} W(\mathbf{x}_i)}$.

Marginalized coverage

Conclusions

- Utilize normalizing flows to find suitable proposal functions to perform rejection sampling.
 - Finds automatically a good proposal function.
 - Exact sampling (corrects inefficiencies of the flow).
- Propose redefining target with background:
 - Improve initial training.
 - Ensure exhaustive coverage.
- Study the possibility of relaxing constrain on rejection sampling through the concept of coverage (see backup).
- Compare it to generic proposal, the uniform distribution, on a simple 4D cross section.

Exhaustive Neural Importance Sampling applied to Monte Carlo event generation, S. Pina-Otey, F. Sanchez, T. Lux and V. Gaitan, Phys. Rev. D 102, 013003 (2020).

THANK YOU!

Backup slides

Normalizing Flows: Transformation

- Transformation *T* is partially defined through a Neural Network.
- **T** is usually **broken down into simpler transformations**:

$$T=T_K\circ\cdots\circ T_1.$$

• Taking
$$z_0 = x$$
 and $z_K = u$:

$$\begin{aligned} \mathbf{z}_{k} &= \mathbf{T}_{k}(\mathbf{z}_{k-1}), \ k = 1: \mathbf{K}, \\ |\det \mathbf{J}_{\mathbf{T}}(\mathbf{x})| &= \left| \det \prod_{k=1}^{\mathbf{K}} \mathbf{J}_{\mathbf{T}_{k}}(\mathbf{z}_{k-1}) \right|. \end{aligned}$$

• We will consider a single transformation T(x) = u.

Normalizing Flows: Autoregressive transformation

- $|\det J_T(x)|$ has to be easy to compute.
 - Idea: Autoregressive transformations:

 $u_i = \tau(\mathbf{x}_i; \mathbf{h}_i)$ with $\mathbf{h}_i = c_i(\mathbf{x}_{< i}; \phi), \quad \mathbf{x}_{< i} = \mathbf{x}_{1:i-1}.$

- **Transformer** $\tau : \mathbb{R} \to \mathbb{R}$ is bijective and differentiable, usually a monotone function.
- **\mathbf{h}_i** are the parameters of these transformers for each component *i*.
- c_i(x_{<i}; φ) is the conditioner for the i-th component, usually a NN of parameters φ.
- All conditioners can be computed at ones efficiently using a Masked Autoregressive Neural Network.
- $J_T(x)$ is now a triangular matrix, hence $|\det J_T(x)|$ is the product of the diagonal.

Normalizing Flows: Masked Autoregressive Flow

Simplest transformer, a linear one:

$$\tau(\mathbf{x}_i; \alpha_i, \beta_i) = \mathbf{x}_i \mathbf{exp} \alpha_i + \beta_i.$$

• Conditioner introduces non-linearities of the density q(x):

$$f_{\alpha_i}(\mathbf{x}_{< i}; \phi_{\alpha}) = \alpha_i; \quad f_{\beta_i}(\mathbf{x}_{< i}; \phi_{\beta}) = \beta_i.$$

Jabobian is trivial to compute:

$$|\det J_T(\mathbf{x})| = \exp\left(\sum_i \alpha_i\right).$$

G. Papamakarios et al., NeurIPS 2017

Transformers are rational quadratic monotonic splines.

- Very flexible, infinite Taylor series.
- Easily differentiable.
- Analytically invertible.
- Parameters of transformer:
 - Position of knots.
 - Derivative of knots.

C. Durkan et al., NeurIPS 2019

NuFact 2021: Exhaustive Neural Importance Sampling applied to Monte Carlo event generation

Example (I) of samples of p(x) vs samples of $q_{\phi}(x)$: Data: NSF:

Example (II) of samples of p(x) vs samples of $q_{\phi}(x)$: Data: NSF:

C. Durkan et al., NeurIPS 2019

ENIS algorithm

1. Warm-up phase:

- (i) Sample $\mathbf{x}_{p} \sim p_{bg}(\mathbf{x})$ and compute their weights $w_{p}(\mathbf{x}_{p}) = p(\mathbf{x}_{p}) / p_{bg}(\mathbf{x}_{p})$.
- (ii) Sample background $\mathbf{x}_{bg} \sim p_{bg}\left(\mathbf{x}
 ight)$ with associated weights

 $w_{bg}(\mathbf{x}_{bg}) = C_{w_{bg}} \cdot p_{bg}\left(\mathbf{x}_{bg}\right)$, where $C_{w_{bg}} = rac{\alpha}{1-\alpha} rac{\langle w_{p}(\mathbf{x}_{p})
angle}{\langle p_{bg}(\mathbf{x}_{bg})
angle}$.

- (iii) Optimize the parameters of $q_{\phi}(\mathbf{x})$ via Eq. (1) using $\mathbf{x} = \{\mathbf{x}_p, \mathbf{x}_{bg}\}$ with weights $w(\mathbf{x}) = \{w_p(\mathbf{x}_p), w_{bg}(\mathbf{x}_{bg})\}.$
- 2. Iterative phase:
 - (i) Sample $\mathbf{x}_{q} \sim q_{\phi}\left(\mathbf{x}\right)$ and compute their weights $w_{q}(\mathbf{x}_{q}) = p\left(\mathbf{x}_{q}\right)/q_{\phi}\left(\mathbf{x}_{q}\right)$.
 - (ii) Sample background $\mathbf{x}_{bg} \sim p_{bg}(\mathbf{x})$ with associated weights $w_{bg}(\mathbf{x}_{bg}) = C'_{w_{bg}}p_{bg}(\mathbf{x}_{bg})$, where $C'_{w_{b\sigma}} = \frac{\alpha}{1-\alpha} \frac{\langle w_q(\mathbf{x}_q) \rangle}{\langle p_{b\sigma}(\mathbf{x}_{b\sigma}) \rangle}$.
 - (iii) Optimize the parameters of $q_{\phi}(\mathbf{x})$ via Eq. (1) using $\mathbf{x} = {\mathbf{x}_q, \mathbf{x}_{bg}}$ with weights $w(\mathbf{x}) = {w_q(\mathbf{x}_q), w_{bg}(\mathbf{x}_{bg})}$.

S. Pina-Otey et al., Phys. Rev. D 102, 013003 (2020)

Visualization of modification

■ Visualization of full support modification of target density.

- No overlap in the original target \rightarrow no gradient.
- Redefined target does overlap \rightarrow gradients.

Proposal training validation loss

S. Pina-Otey et al., Phys. Rev. D 102, 013003 (2020)

- 400k training steps.
- 5 flow steps, depth 2 of transforming blocks.
- 32 hidden units per layer and 8 bins for the splines.
- 37 220 learnable parameters.
- 0.0005 learning rate and batch size of 5k.
- 200k samples for validation every 1k steps.