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Rejection sampling

A numerical method for sampling from an
analytical PDF.
Samples generated via a similar proposal
function q (x), a PDF which can be both
evaluated and sampled from.
Proposal function multiplied by a constant
k ≥ 1 such that p (x) ≤ k · q (x), ∀x.
x ∼ q (x) is accepted with probability
p (x) /(k · q (x)).
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Goal

Find suitable proposal q (x) for rejection sampling for better efficiency.

Main issues

1. Designing a suitable proposal
function can be very costly in
human time.

2. Generic proposal functions, e.g. a
uniform distribution, makes the
algorithm usually very inefficient.

3. The inefficiency grows rapidly with
the number of dimensions.

Normalizing flows proposal
1. Adapts to a given target density
automatically.

• Barely human time cost.
• Good acceptance efficiency.

2. Grows properly with the number of
dimensions.

3. Produces exact samples through
rejection sampling.
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Normalizing flows
Define a transformation Tϕ from a
complex target density qϕ(x) to a
simple base density f(u):
u = Tϕ(x).
Tϕ is invertible and differentiable,
and satisfies:
qϕ(x) = f(Tϕ(x))|det JT(x)|

f(u) can be evaluated and
sampled from.
Tϕ allows to sample and evaluate
from qϕ(x) using f(u) via T−1

ϕ .
Example of transforming from f(u)
Gaussian to qϕ(x) in star shape.
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Source: arXiv:1912.02762
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Standard problem and objective function

Standard problem:
Given data x ∼ p(x), find qϕ(x) ≈ p(x) with only samples.
How? Minimizing the Kullback-Leibler divergence:

DKL
(
p(x)∥qϕ(x)

)
=

∫
p(x) log

(
p(x)
qϕ(x)

)
dx.

arg min
ϕ

DKL
(
p(x)∥qϕ(x)

)
= arg min

ϕ
−
∫
p(x) logqϕ(x) dx

≈ arg max
ϕ

∑
logqϕ(x) with x ∼ p(x).
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Modifying Neural Importance Sampling

To minimize DKL
(
p (x) ∥qϕ (x)

)
, Müller et al. (1808.03856) propose to use the

gradient
1

N

N∑
i=1

w(xi)∇ϕ logqϕ (xi) , xi ∼ qϕ (xi) and w(xi) =
p (xi)
qϕ (xi)

. (1)

We propose to additionally redefine the target density with a background
(e.g., uniform):

ptarget (x) = (1− α) · p (x) + α · pbg (x) .
Aim:

• Improve initial training, ensuring the full support of p (x) (better than
randomly initialized NF).

• Ensure exhaustive coverage of the phase space.
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ENIS general scheme
Generate samples

xbg~pbg(x)
with weights

wbg(xbg)? pbg(xbg)

Generate samples
xp~pbg(x)

with weights
wp(xp)=p(xp)/pbg(xp)

Get sets of
x={xp,xbg}

and
w={wp(xp),wbg(xbg)}

Optimize ? with Eq.(1)
(? i

Nw(xi) ? ? log q?(xi))/N

Update q?(x)

Density
q?(x)

Warm up phase Iterative phase

After finishing
warm up phase

Finished 
warm up
phase?

START

Obtain final 
proposal model

q?(x)

Yes

No

Yes

Density
pbg(x)

Generate samples
xbg~pbg(x)

with weights

wbg(xbg)? pbg(xbg)

Generate samples
xq~q?(x)

with weights
wq(xq)=p(xq)/q?(xq)

Get sets of
x={xq,xbg}

and
w={wq(xq),wbg(xbg)}

Optimize ? with Eq.(1)
(? i

Nw(xi) ??  log q?(xi))/N

Update q?(x)
Finished 
iterative
phase?

No

NF 
initialized
 randomly

Uses only 
pbg(x) to 
sample

Uses 
both 

pbg(x) and 
mainly 
q?(x) to 
sample

NF is 
trained
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CCQE cross section

Charged-Current
Quasi-Elastic (CCQE)
interaction:

νl + n→ l− + p
ν̄l + p→ l+ + n

Cross section is the
probability of a
specific process taking
place:

• Cross section of a
CCQE interaction.

Feynman diagrams:

p

νl

W

n

l−

ν̄l CCQE scattering.

n

ν̄l

W

p

l+

ν̄l CCQE scattering.

Variables: Eν , El, θl,pnucleon
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True vs proposal 1D

Original target in blue.
NF proposal in orange.
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True vs proposal 2D
Marginalized p (x) density Marginalized qϕ (x) density
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Weights wq(x) = p(x)/qϕ(x) distributions for rejection sampling
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Coverage and weight distribution
Coverage

To perform rejection sampling, we need

k · q (x) ≥ p (x) ∀ x : p (x) > 0.

Relax k with Q-quantile of weights
p (x) /qϕ (x) wQ, denoted by
kQ = (Q-quantile(w))−1 = w−1

Q , to
improve paccept.
Define coverage with the new kQ:

Coverage =

∑N
i=1w′(xi)∑N
i=1w(xi)

.
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Quantile Prop. paccept Coverage
1.000 NSF 0.0051 1.0000

Unif. 0.0002 1.0000
0.999 NSF 0.3590 0.9984

Unif. 0.0027 0.6185
0.981 NSF 0.7968 0.9920

Unif. 0.0193 0.0039
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Marginalized coverage
Marginalized coverage of qϕ (x)
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Conclusions

Utilize normalizing flows to find suitable proposal functions to perform
rejection sampling.

• Finds automatically a good proposal function.
• Exact sampling (corrects inefficiencies of the flow).

Propose redefining target with background:
• Improve initial training.
• Ensure exhaustive coverage.

Study the possibility of relaxing constrain on rejection sampling through the
concept of coverage (see backup).
Compare it to generic proposal, the uniform distribution, on a simple 4D
cross section.
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Exhaustive Neural Importance Sampling
applied to Monte Carlo event generation,

S. Pina-Otey, F. Sanchez, T. Lux and V. Gaitan,
Phys. Rev. D 102, 013003 (2020).

THANK YOU!
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Backup slides
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Normalizing Flows: Transformation
Transformation T is partially defined through a Neural Network.
T is usually broken down into simpler transformations:

T = TK ◦ · · · ◦ T1.

Taking z0 = x and zK = u:

zk = Tk(zk−1), k = 1 : K,

|det JT(x)| =
∣∣∣∣∣det

K∏
k=1

JTk(zk−1)

∣∣∣∣∣ .
We will consider a single transformation T(x) = u.
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Normalizing Flows: Autoregressive transformation
|det JT(x)| has to be easy to compute.

• Idea: Autoregressive transformations:

ui = τ(xi;hi) with hi = ci(x<i;ϕ), x<i = x1:i−1.

Transformer τ : R → R is bijective and differentiable, usually a monotone
function.
hi are the parameters of these transformers for each component i.
ci(x<i;ϕ) is the conditioner for the i-th component, usually a NN of
parameters ϕ.
All conditioners can be computed at ones efficiently using a Masked
Autoregressive Neural Network.
JT(x) is now a triangular matrix, hence |det JT(x)| is the product of the
diagonal.
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Normalizing Flows: Masked Autoregressive Flow
Simplest transformer, a linear one:

τ(xi;αi, βi) = xiexpαi + βi.

Conditioner introduces non-linearities of the density q(x):

fαi(x<i;ϕα) = αi; fβi(x<i;ϕβ) = βi.

Jabobian is trivial to compute:

|det JT(x)| = exp
(∑

i
αi

)
.

G. Papamakarios et al., NeurIPS 2017
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Normalizing Flows: Neural Spline Flow

Transformers are rational quadratic
monotonic splines.

• Very flexible, infinite Taylor series.
• Easily differentiable.
• Analytically invertible.

Parameters of transformer:
• Position of knots.
• Derivative of knots.

C. Durkan et al., NeurIPS 2019 −B 0 B

x
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0
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Normalizing Flows: Neural Spline Flow
Spline:
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C. Durkan et al., NeurIPS 2019
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Normalizing Flows: Neural Spline Flow
Example (I) of samples of p(x) vs samples of qϕ(x):

Data: NSF:

C. Durkan et al., NeurIPS 2019
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Normalizing Flows: Neural Spline Flow
Example (II) of samples of p(x) vs samples of qϕ(x):

Data: NSF:

C. Durkan et al., NeurIPS 2019
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ENIS algorithm
1. Warm-up phase:

(i) Sample xp ∼ pbg (x) and compute their weights wp(xp) = p (xp) /pbg (xp).
(ii) Sample background xbg ∼ pbg (x) with associated weights

wbg(xbg) = Cwbg · pbg
(
xbg
)
, where Cwbg = α

1−α
⟨wp(xp)⟩
⟨pbg(xbg)⟩ .

(iii) Optimize the parameters of qϕ (x) via Eq. (1) using x = {xp, xbg} with weights
w(x) = {wp(xp),wbg(xbg)}.

2. Iterative phase:
(i) Sample xq ∼ qϕ (x) and compute their weights wq(xq) = p (xq) /qϕ (xq).
(ii) Sample background xbg ∼ pbg (x) with associated weights

wbg(xbg) = C′wbgpbg
(
xbg
)
, where C′wbg =

α
1−α

⟨wq(xq)⟩
⟨pbg(xbg)⟩ .

(iii) Optimize the parameters of qϕ (x) via Eq. (1) using x = {xq, xbg} with weights
w(x) = {wq(xq),wbg(xbg)}.

S. Pina-Otey et al., Phys. Rev. D 102, 013003 (2020)
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Visualization of modification
Visualization of full support modification of target density.

• No overlap in the original target→ no gradient.
• Redefined target does overlap→ gradients.
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Proposal training validation loss
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S. Pina-Otey et al., Phys. Rev. D 102, 013003 (2020)

400k training steps.
5 flow steps, depth 2 of
transforming blocks.
32 hidden units per layer
and 8 bins for the splines.
37 220 learnable
parameters.
0.0005 learning rate and
batch size of 5k.
200k samples for validation
every 1k steps.
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