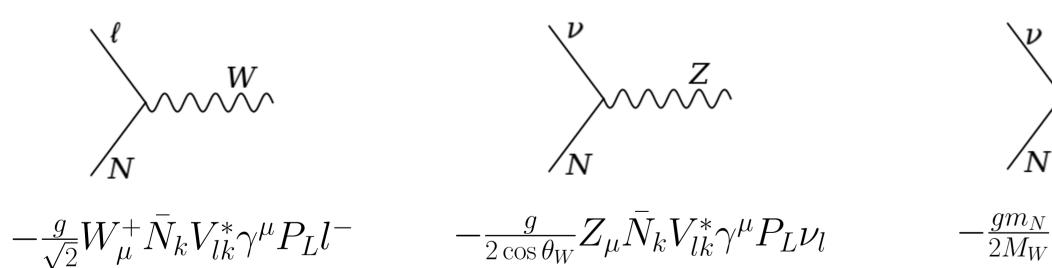


Motivation

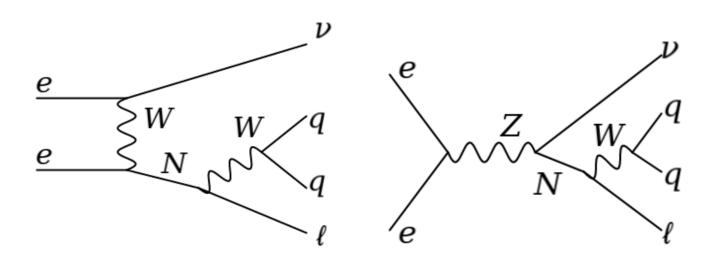
- The Standard Model (SM) is successful in describing most of experimental results but it cannot explain such problems as the baryon asymmetry or the existence of dark matter.
- They could be potentially solved by introducing to the SM heavy neutrinos which would be produced at **future linear** e^+e^- **colliders**.

Future linear e^+e^- **colliders**

- An electron-positron Higgs factory is foreseen as the highest-priority next large-scale collider facility.
- Two **linear** colliders are being considered: the **CLIC** and the **ILC**.
- In the presented analysis, 3 different collider options are studied:


scenario	collision energy [GeV]	int. luminosity [ab $^{-1}$]	$ e^-/\epsilon$
ILC500	500	1.6	-8(
ILC1000	1000	3.2	-80
CLIC3000	3000	4.0	-80

Heavy neutrinos


• A right-handed heavy neutrino, which is a singlet under the SM gauge symmetry, can be introduced by adding new terms to the SM Lagrangian:

$$\mathcal{L} = \mathcal{L}_{SM} + \mathcal{L}_N + \mathcal{L}_{WNl} + \mathcal{L}_{ZN\nu} + \mathcal{L}_{HN\nu},$$

where \mathcal{L}_N – heavy neutrino propagator and the others introduce new vertices:

• Such neutrinos could be observed at linear colliders in a **light-heavy neutrino pair production** process with a subsequent heavy neutrino decay into a lepton and two quarks:

Heavy Neutrinos at Future Linear e^+e^- Colliders

K. Mękała¹, A. F. Żarnecki¹, J. Reuter², S. Brass²

¹Faculty of Physics, University of Warsaw

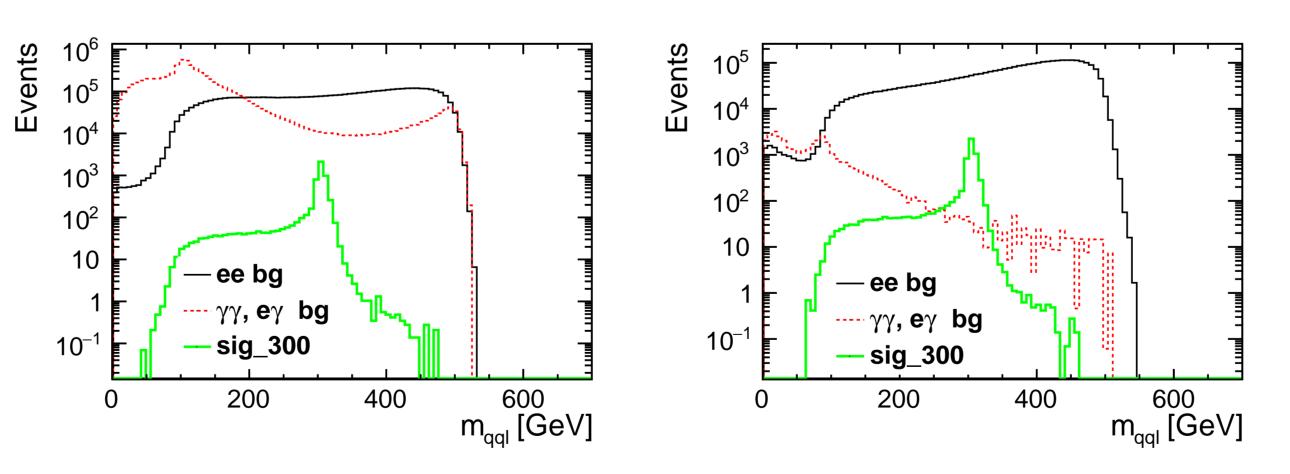
²Theory Group, Deutsches Elektronen-Synchrotron

Event generation and detector simulation

e^+ beam pol.

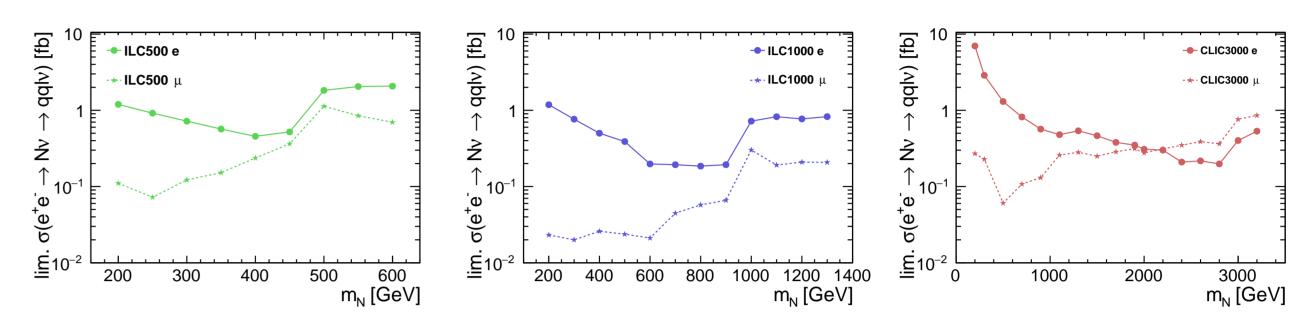
30% / +30% 30% / +20% 30% / unpol.

- ____<u>H</u>_
- $-rac{gm_N}{2M_W}har{N}_kV_{lk}^*P_L
 u_l$


- Events were generated with Whizard 2.8.5 (v. 3.0.0 for the Majorana) [1].
- Both **ISR** and **beam energy spectra** were taken into account.
- The HeavyN model [2] with one heavy neutrino coupled to the SM was used in the study.
- Both **Dirac** and **Majorana** neutrinos with masses in the range **200-3200 GeV** were considered and all the couplings were set to the same value:

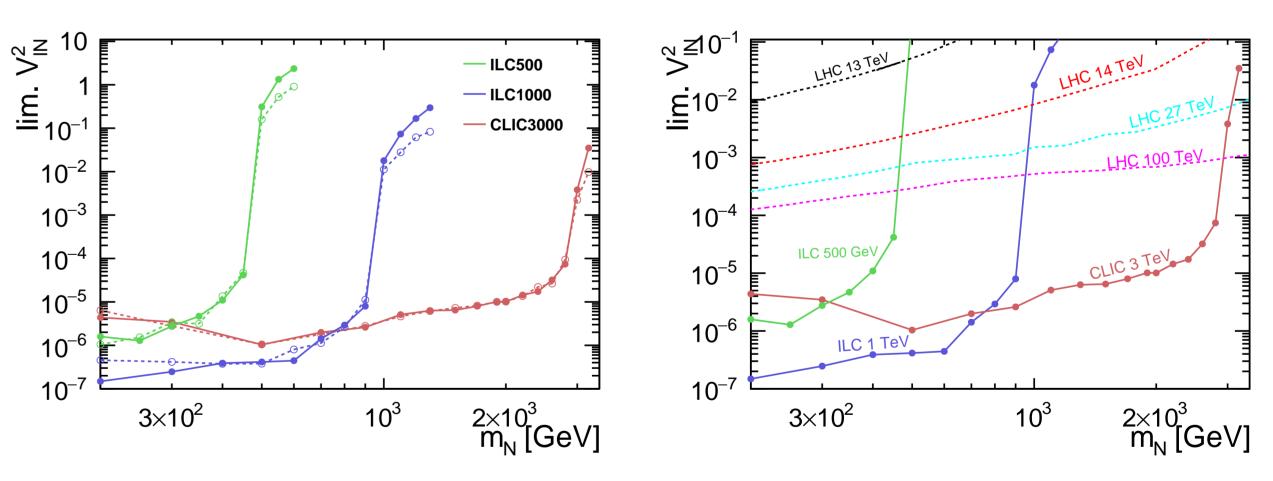
 $|V_{eN}|^2 = |V_{\mu N}|^2 = |V_{\tau N}|^2 \equiv V_{lN}^2.$

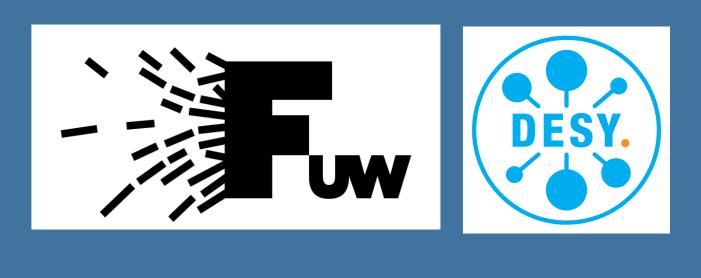
- We also took beamstrahlung (BS) and Equivalent Photon Approximation (EPA) photon interactions into account.
- The following processes were studied: $\star e^+e^- \to qql\nu, qqll, llll, qql\nu l\nu, qqqql\nu, qqqqll,$ $\star e^{\pm} \gamma \to qql,$ $\star \gamma \gamma \rightarrow qql\nu, qqll (\gamma \text{ from BS or EPA}).$
- To test many different points in the parameter space, Delphes [3] with built-in cards for ILC and CLIC detectors was employed.


Data analysis

- Only events consisting of **two jets and one lepton** (electron or muon) were accepted for the analysis.
- In the figure below, the qql invariant mass distributions are shown for ILC500 for an electron (left) and a muon (right) in the final state.

- The **Boosted Decision Trees** (BDT) method with 8 input variables describing lepton and dijet kinematics was used.
- To get final results, the **CLs method** basing on the BDT response was employed with:
 - \star electron and muon channels combined,
 - \star normalisation uncertainty applied.


on the cross section for the considered process:


those for electrons.

- due to width-related effects is visible.

- **magnitude higher** than that of the hadron machines.
- and ILC," Eur. Phys. J., vol. C71, p. 1742, 2011.
- [2] https://feynrules.irmp.ucl.ac.be/wiki/HeavyN.
- collider experiment," JHEP, vol. 02, p. 057, 2014.
- searches at $\sqrt{s} = 14$, 27, and 100 TeV," JHEP, vol. 06, p. 049, 2019.

Cross section limits

• By scaling results for the reference scenario, one can extract exclusion limits

• In the most cases, results for the **muon channel** are more stringent than

Coupling limits

• The above limits can be translated into limits on the V_{lN}^2 coupling parameter. • Left: limits for **Dirac** (solid lines) and **Majorana** (dashed lines) neutrinos are very similar up to the energy thresholds; above the threshold, the splitting

• *Right*: the results are compared with the **current limits** from the CMS (black line) and possible successors of the LHC (red, cyan, magenta lines) [4].

• Sensitivity of future e^+e^- machines to heavy neutrino production is orders of

References

[1] W. Kilian, T. Ohl, and J. Reuter, ``WHIZARD: Simulating Multi-Particle Processes at LHC

[3] J. de Favereau et al., ``DELPHES 3, A modular framework for fast simulation of a generic

[4] S. Pascoli, R. Ruiz, and C. Weiland, ``Heavy neutrinos with dynamic jet vetoes: multilepton