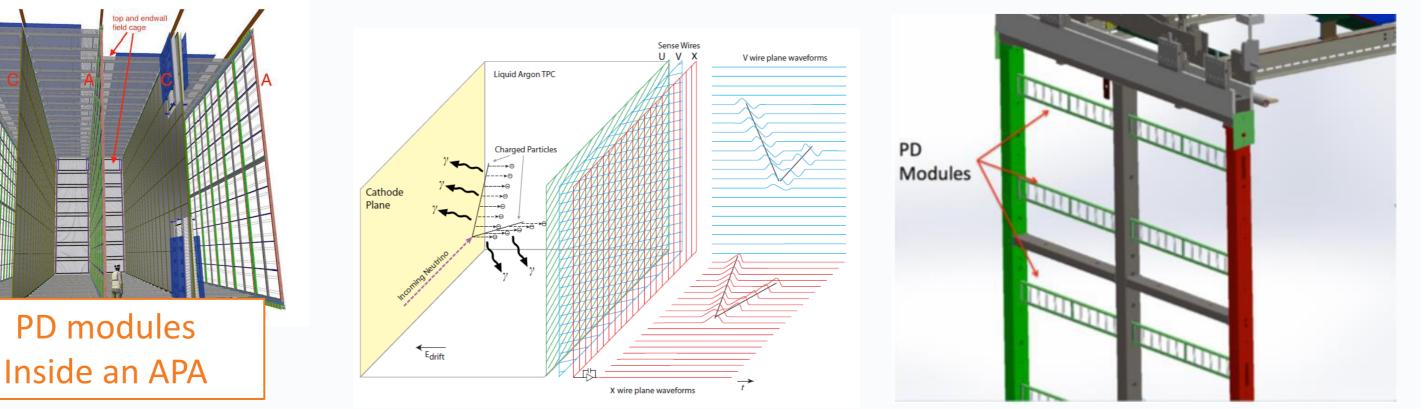


The DUNE Photon Detection System


A. Falcone^{1,2} on behalf of DUNE Collaboration

¹Department of Physics "G.Occhialini", University of Milano Bicocca; ²INFN, Section of Milano Bicocca

Read out the pattern of ionization with sub cm granularity □Search from MeV to GeV scale neutrino interactions

Photon Detection System

Goals: \checkmark Maximize the active volume ✓ Maximize the light yield

Considerations: ✓ Constraint of the APA structure ✓ Cost effective: large area light collector minimizing photosensor coverage.

Light collectors: X-Arapuca

Position :

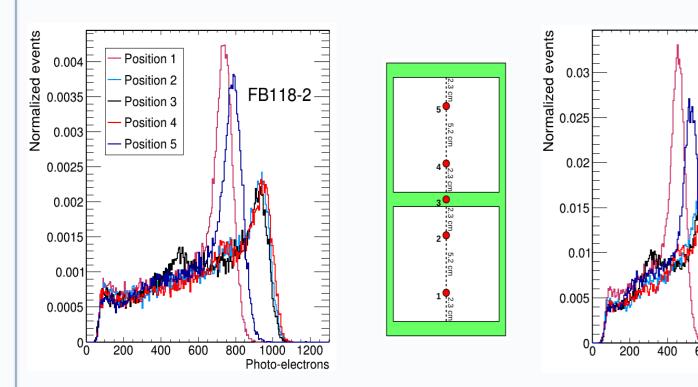
Position 3

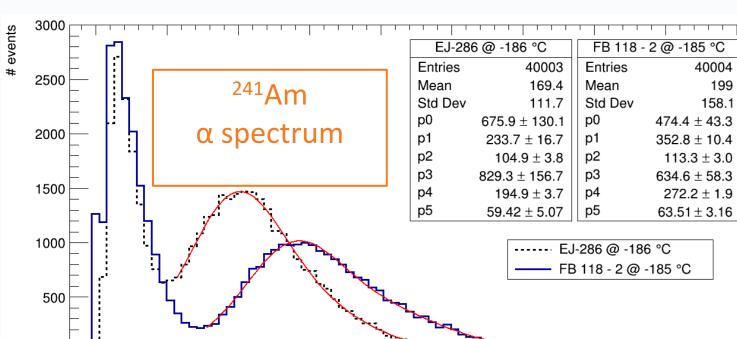
Position -

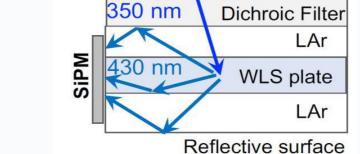
Position 5

□The X-ARAPUCA design makes use of total internal reflection and highly reflective boxes to capture wavelengthshifted photons to improve detection efficiency.

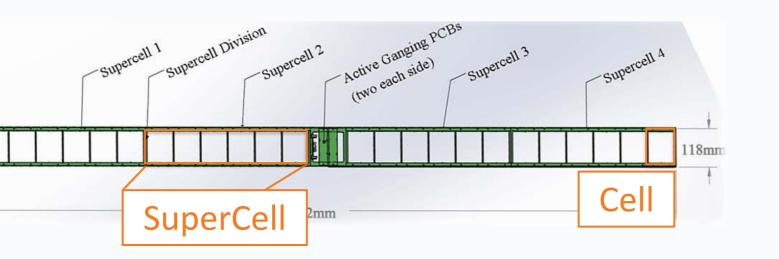
□Keys to an effective PD system in DUNE:




48 SiPMs per Supercell ✓6 SiPMs per PMB passively ganged ✓ 8 PMB actively ganged

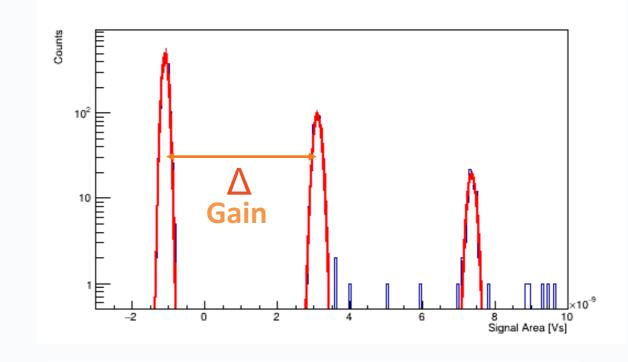


- ✓ Efficient conversion of VUV photons to captured photons.
- ✓ High fraction of captured photons incident on photosensors.
- ✓ Efficient photosensors for converting photons into electric signals.


USupercell: 6 cells $488 \times 100 \times 8 \text{ mm}^3$. **DPD Module**: 4 supercells 2092 × 118 × 23 mm^3 (bars configuration).

127 nm

Supercell test: 2-window supercell tested. Test on **light collection uniformity** and efficiency.


- Test on **different WLS plates**: 600 800 1000 1200 Photo-electrons ✓ Commercial (Eljen 286) WLS plate, with measured PDE of 2.8%.
 - ✓ **New WLS** bars (FB118-2, Acrylic matrix, higher efficiency) developed at MiB with PDE measured in same test stand 3.8%.

□ Supermodule test

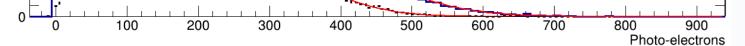
 \checkmark 2 supercells (half supermodule)

192 SiPMs per PD module \checkmark 4 electronics readout channels ✓ 288,000 SiPMs in total

- **Two photosensor vendors** are being investigated: Hamamatsu (HPK) and FBK
- \checkmark 6 types (splits) of 6x6 mm² SiPMs developed specifically for DUNE: 4 from HPK (S13360 – LQR/HQR – 50/75 µm pitch) and 2 from FBK (NUV HD LF single/triple trench)

PMB for

Photosensors : SiPMs

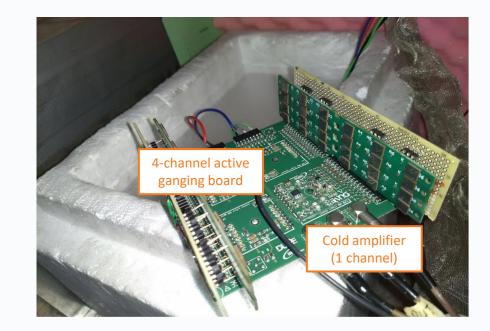


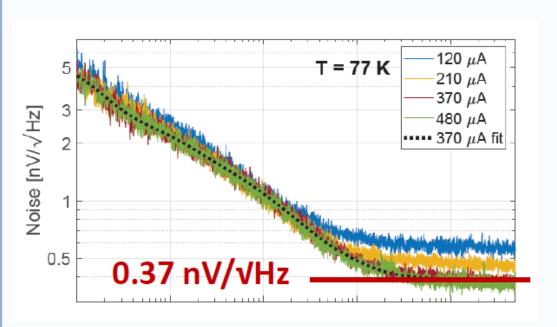
passive ganging	
Low level specs	Value
Max nominal operating V	[50 V at cold]
Dark count rate (DCR)	<100 mHz/mm ²
Correlated noise	<35%
Time resolution	<1 ms
Thermal cycles	>20

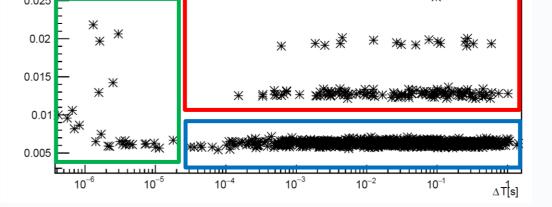
Time resolution	<1 ms
Thermal cycles	>20
Recovery time	t ~ a few ms
PDE at 87 K	>35% at nominal OV
High level specs	Value
High level specs Dynamic range	Value 1-2000 p.e.

First selection procedure

- □25 SiPMs of each type **fully** characterized at single SiPM level: ✓ IV curve measurements at room T at 77 **K**:
- ✓ gain, S/N and DCR measured (77K) at OV to obtain 40%-45%-50% of PDE;
- ✓ 20 **thermal cycles** with controlled cooling down and warming up;
- ✓ all measurements repeated after the thermal stresses.




- ✓ Allow to test all the electrical boards for DUNE
- Coating and assembly infrastructure are being completed


Assembly infrastructure

Cold Electronics : Active Ganging

- Used to collect the **signals of 48 SiPMs** of a supercell into a **single readout channel**.
- \Box Each channel reads out **48 6x6 mm² SiPMs** \rightarrow 60 nF total input capacitance.
- □1 channel per SuperCell, 4 channels per module, 6000 channels in DUNE (1st module).
- **Two-stage amplifier** SiGe bipolar transistor + fully differential op-amp.
- **\BoxLow series noise** is required \rightarrow SiGe input transistor gives **0.37 nV**/ \sqrt{Hz} at cryo temperature.

Final selection procedure

- **250 SiPMs per type** in the DUNE SiPM board tested at single SiPM level:
- ✓IV measurements for all SiPMs at room T and 77K;
- \checkmark 20 thermal cycles with controlled cooling down and warming up;
- ✓ IV measurements repeated for all SiPMs and **complete characterization** for 5% sample per split.
- □ Test with **48 SiPM in active ganging** at different OV per each split: test of S/N and signal shape.
- **HPK HQR 75 µm** and **FBK Triple Trench** down selected.

□ All splits fulfill DUNE specifications.

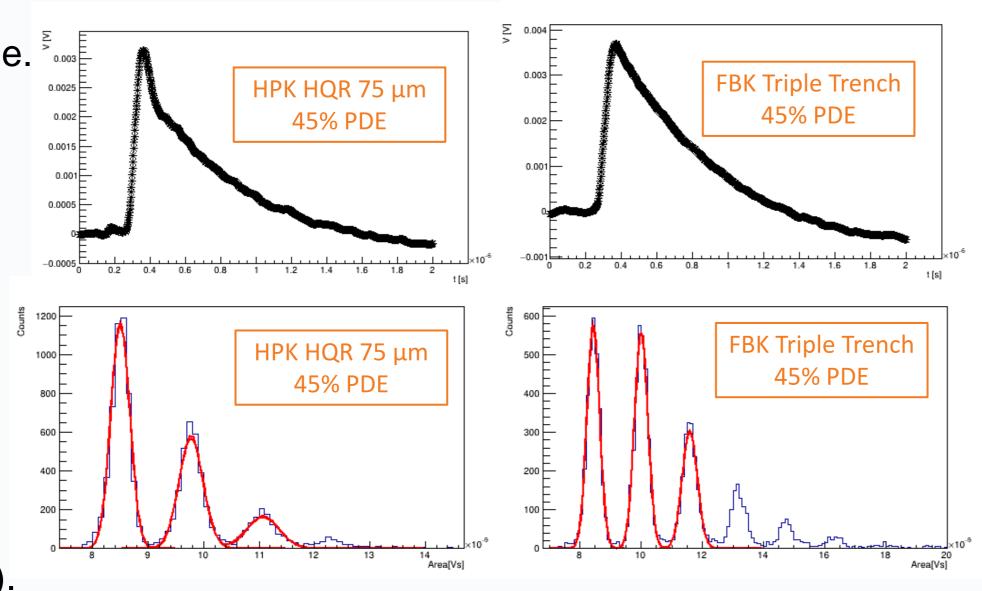
HPK HQR 75 μm						
PDE	Gain (10 ⁶)	DCR (mHz/mm²)	Cross-talk	After pulse		
40	3.73	57.54	6.62	0.86		
45	4.59	64.97	8.97	1.10		
50	5.44	66.32	10.96	1.30		

FBK Triple Trench

PDE	Gain (10 ⁶)	DCR (mHz/mm²)	Cross-talk	After pulse
40	4.73	80.79	13.76	2.85
45	6.01	86.33	15.67	3.25
50	8.21	93.35	40.50	4.05

ProtoDUNE run II production

□3000(+1000) SiPMs FBK and 3000(+1000) SiPMs Hamamatsu.


Low power consumption (2 mW/channel) to prevent boiling of LAr.

Tested with all candidate SiPMs for DUNE.

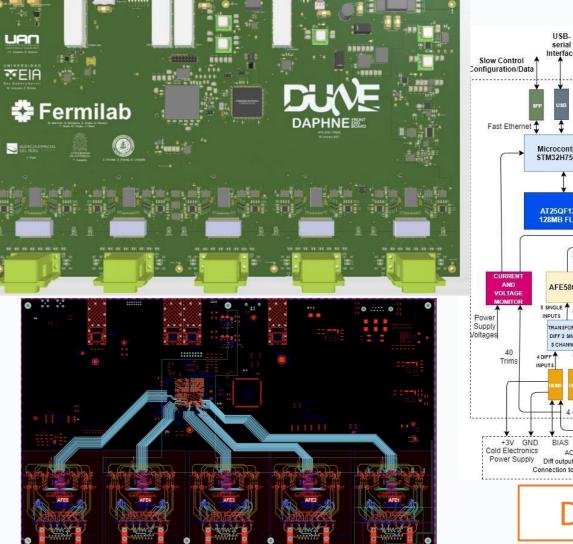
□Fast response: <100 ns rise time. 5..... Dynamic range 2000 p.e. **□Good S/N** \approx 5-10 depending on SiPM type and overvoltage \rightarrow Allows clear separation of photoelectron peaks (with 48 SiPMs in parallel). □At 45% PDE:

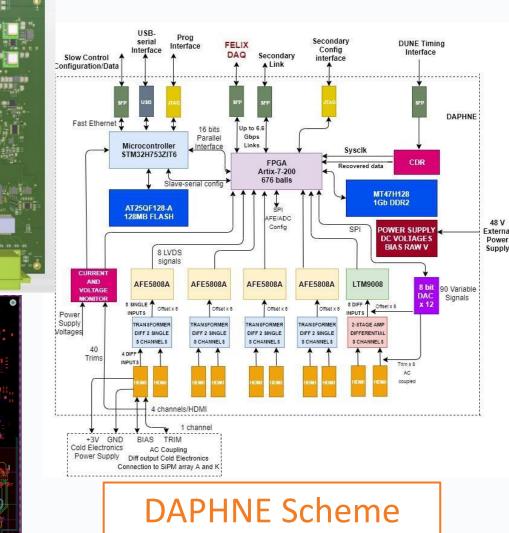
√HPK HQR 75 µm: 5.96 ; ✓ FBK Triple Trech: 7.16.

 \Box Next \rightarrow Integration of all the cold parts (SiPM+routing+cold amp+cable).

Dedicated test stand for automatized IV curve and DCR measurements.

Warm Electronics : DAPHNE ASICs


DAPHNE (Detector electronics for


Acquiring PHotons from NEutrinos) design developed by the Mu2e redout.

DAPHNE read-out boards: ✓40 channels per module; ✓ Artix 7 FPGA;

✓14 bit ultrasound ADC;

✓ Bias-Trim Voltage supply ✓ Cold Electronics power supply +3V ✓ Gigabit link up to 6.6 Gb/s to FELIXDAQ/full-mode protocol ✓ DUNE **Timing interface**

