Contribution ID: 172 Type: Poster

Explaining the MiniBooNE Excess Through a Mixed Model of Oscillation and Decay

This talk presents a model of the electron-like excess observed by the MiniBooNE experiment comprising of oscillations involving two new mass states: ν_4 , at $\mathcal{O}(1)$ eV, that participates in oscillations, and \mathcal{N} , at $\mathcal{O}(100)$ MeV, that decays to $\nu + \gamma$ via a dipole interaction.

Short-baseline oscillation data sets, omitting MiniBooNE appearance data, are used to predict the oscillation parameters. We simulate the production of $\mathcal N$ along the Booster Neutrino Beamline via both Primakoff upscattering ($\nu A \to \mathcal N A$) and Dalitz-like neutral pion decays ($\pi^0 \to \mathcal N \nu \gamma$).

The simulated events are fit to the MiniBooNE neutrino energy and visible scattering angle data separately to find a joint allowed region at 95\% CL.

A point in this region with a coupling of 3.6×10^{-7} GeV $^{-1}$, $\mathcal N$ mass of 394 MeV, oscillation mixing angle of 6×10^{-4} and mass splitting of 1.3 eV 2 has $\Delta\chi^2/dof$ for the energy fit of 15.23/2 and 37.80/2. This model represents a significant improvement over the traditional single neutrino oscillation model.

Working group

WG5

Primary author: Mr VERGANI, Stefano (University of Cambridge)

Co-authors: Mr KAMP, Nicholas William (Massachusetts Institute of Technology); Mr DIAZ, Alejandro (Massachusetts Institute of Technology); Prof. ARGÜELLES, Carlos A. (Harvard University); Prof. CONRAD, Janet M. (Massachusetts Institute of Technology); Prof. SHAEVITZ, Michael H. (Columbia University); Prof. UCHIDA, Melissa A. (University of Cambridge)

Presenter: Mr VERGANI, Stefano (University of Cambridge)

Session Classification: Poster session NB: do not use Safari; use Firefox, Chrome or Edge