# Flux measurements in MINERvA

September 7, 2021

Mike Kordosky





### The MINERvA Experiment



### The MINERvA Experiment



### The MINERvA Experiment



The event rate at a near detector is a convolution of three terms

$$\Gamma_{\rm ND}(E_{\rm reco}) = \int \Phi_{\rm ND}(E_{\rm true}) \ \sigma_{\rm ND}(E_{\rm true}) \ R_{\rm ND}(E_{\rm true}, E_{\rm reco}) \ dE_{\rm true}$$

Neutrino Flux

- Predicted, a priori, from a beam simulation (g4NuMI, g4LBNE)
- Hadron production data (NA49, NA61, MIPP, etc) used to improve the simulation. Incorporated via event by event reweighting.
- Uncertainties from the HP data, physics model, & beam optics propagated via many universes (a.k.a. multi-sim) approach.
- Some systematic control by changing horn currents, target position, or off axis position

The event rate at a near detector is a convolution of three terms\*:

$$\Gamma_{\rm ND}(E_{\rm reco}) = \int \Phi_{\rm ND}(E_{\rm true}) \ \sigma_{\rm ND}(E_{\rm true}) \ R_{\rm ND}(E_{\rm true}, E_{\rm reco}) \ dE_{\rm true}$$

**Cross-section** 

- Nucleus, and hence detector, dependent
- Usually the FD and ND have the same nuclei, so the cross-sections are the same at the two detectors
- Or the ND has a variety
- Various final states, some easier to measure than others.

<sup>\*</sup> Mis-identified events / backgrounds complicate this but in a non-essential way. Let's ignore them.

The event rate at a near detector is a convolution of three terms

$$\Gamma_{\rm ND}(E_{\rm reco}) = \int \Phi_{\rm ND}(E_{\rm true}) \ \sigma_{\rm ND}(E_{\rm true}) \ R_{\rm ND}(E_{\rm true}, E_{\rm reco}) \ dE_{\rm true}$$

Detector Response

- Encodes the relationship between true and reconstructed energy
- Includes kinematic acceptance & smearing
- Predicted by a MC simulation: event generator + GEANT
- Depends on the scattering channel / final state

### What if you get $\sigma \times R$ wrong?



- DUNE study where missing energy due to neutrons was not understood
- Model was tuned but using the wrong mechanism

### What if you get $\sigma \times R$ wrong?

DUNE ND CDR arXiv:2103.13910



- DUNE study where pion multiplicity (and a few other things) are not modeled correctly.
  - Mock data is NuWro, model is GENIE
- Affects R since one needs to correct for pion mass to get E<sub>reco</sub>
- Large bias in  $\delta_{\rm cp}$  can be mitigated by cross-section measurements in the ND

The far detector has an additional term:

Oscillation Probabillity

$$\Gamma_{\text{FD}}(E_{\text{reco}}) = \int \Phi_{\text{FD}}(E_{\text{true}}) \, \sigma_{\text{FD}}(E_{\text{true}}) \, R_{\text{FD}}(E_{\text{true}}, E_{\text{reco}}) P_{\text{osc}}(E_{\text{true}}; \theta, \Delta m^2) \, dE_{\text{true}}$$

- The goal is to extract the oscillation parameters
- Beam simulations predict  $\Phi_{FD}/\Phi_{ND}$  fairly well (% level uncertainties) without oscillations.
- Constructing the two detectors out of the same nuclei gives the same σ at the FD and ND
- $\bullet$  Functionally similar ND and FD can reduce the difference between  $R_{\text{FD}}$  and  $R_{\text{ND}}$
- But the integral and unknown P<sub>osc</sub> spoils direct cancellation
- Oscillation analyses end up being model dependent at some level
- Need to understand the models and/or reduce/remove dependency

$$\Gamma_{\rm ND}(E_{
m reco}) = \int \Phi_{
m ND}(E_{
m true}) \ \sigma_{
m ND}(E_{
m true}) \ R_{
m ND}(E_{
m true}, E_{
m reco}) \ dE_{
m true}$$

### MINERvA: a ND without a pesky FD

$$\Gamma_{\rm ND}(E_{\rm reco}) = \int \Phi_{\rm ND}(E_{\rm true}) \ \sigma_{\rm ND}(E_{\rm true}) \ R_{\rm ND}(E_{\rm true}, E_{\rm reco}) \ dE_{\rm true}$$

- MINERvA's goal is to tease apart this integral
- Factorize it into three parts:
  - Flux
  - Cross-section
  - Response
- I'll spend a good bit of time talking about the flux.
  - o It's the first thing you'd like to get right.
  - MINERvA's flux campaign has unique elements enabled by the fined grained scintillator tracker and the large dataset.
  - Lessons and techniques apply directly onto future experiments (e.g., DUNE),
- The starting point is the NuMI beam simulation corrected with hadron production data.
- Then a series of in situ measurements are used to reduce uncertainties.

### The NuMI Beam



Getting to a precise flux



### Focusing uncertainties



## Hadronic interactions

#### What a mess!

 Many neutrinos have multiple interactions in their "ancestry"



 Strong interactions & hadronization at low Q<sup>2</sup> in nuclei. Don't expect the MC to get it right!

### # of interactions per $v_{\mu}$ (x100)

| Material         |       |     |     |     |     |            |     |  |
|------------------|-------|-----|-----|-----|-----|------------|-----|--|
| Projectile       | С     | Fe  | Al  | Air | Не  | $\rm H_2O$ | Ве  |  |
| p                | 117.5 | 2.9 | 1.0 | 1.1 | 1.5 | 0.1        | 0.1 |  |
| $\pi^+$          | 8.1   | 1.3 | 1.8 | 0.2 | _   | 0.4        | _   |  |
| $\pi^-$          | 1.3   | 0.2 | 0.2 | _   | _   | _          | _   |  |
| $K^{\pm}$        | 0.6   | 0.1 | 0.1 | _   | _   | _          | _   |  |
| $K^0$            | 0.6   | _   | _   | _   |     | _          | _   |  |
| $\Lambda/\Sigma$ | 1.0   | _   | _   | _   | _   | _          | _   |  |



15

### Constraining the simulation

### **Our Strategy**

- Carefully tabulate interactions and material in each n's ancestry
- Find some relevant hadron production data
- 3) Weight interactions  $w(x_F, p_T, E) =$
- 4) Assign and propagate uncertainties



$$f_{Data} = \frac{1}{\sigma_{\rm inel}} E \frac{\mathrm{d}^3 \sigma}{\mathrm{d}p^3}$$

$$w(x_F, p_T, E) = \frac{f_{Data}(x_F, p_T, E)}{f_{MC}(x_F, p_T, E)}$$



### Thin target $\pi$ production data



This is the major data-set used to make our flux prediction

### The a priori flux prediction





- L. Aliaga PhD thesis. *Phys.Rev.D* 94 (2016) 9, 092005
- Uncertainty < 10% over most of the range.</li>

### in situ data: the low-nu technique

Cross-section as a function of the energy transfer v

Becomes constant for small  $\nu$ /E, resulting in a measurement of the flux shape.

Normalized to well measured high energy neutrino CC cross-section Data indicates a warping of the flux shape around the focusing peak. Best hypothesis is a 3.6% (1.8 $\sigma$ ) shift in the muon energy scale.

$$\frac{d\sigma}{d\nu} = A\left(1 + \frac{B}{A}\frac{\nu}{E_{\nu}} - \frac{C}{A}\frac{\nu^2}{E_{\nu}^2}\right)$$



"Use of Neutrino Scattering Events with Low Hadronic Recoil to Inform Neutrino Flux and Detector Energy Scale" A. Bashyal et al (MINERvA), 2021 JINST 16 P08068

### in situ data: the low-nu technique

Data indicates a warping of the flux shape around the focusing peak. Best hypothesis is a 3.6% ( $1.8\sigma$ ) shift in the muon energy scale.

Weakness of this method is the potential circularity with cross-section measurements and model dependence.

As ever, the problem is the nucleus.

$$\frac{d\sigma}{d\nu} = A\left(1 + \frac{B}{A}\frac{\nu}{E_{\nu}} - \frac{C}{A}\frac{\nu^2}{E_{\nu}^2}\right)$$



"Use of Neutrino Scattering Events with Low Hadronic Recoil to Inform Neutrino Flux and Detector Energy Scale" A. Bashyal et al (MINERvA), 2021 JINST 16 P08068

### in situ data: the low-nu technique

Data indicates a warping of the flux shape around the focusing peak. Best hypothesis is a 3.6% ( $1.8\sigma$ ) shift in the muon energy scale.

Weakness of this method is the potential circularity with cross-section measurements and model dependence.

$$\frac{d\sigma}{d\nu} = A\left(1 + \frac{B}{A}\frac{\nu}{E_{\nu}} - \frac{C}{A}\frac{\nu^2}{E_{\nu}^2}\right)$$



As ever, the problem is the nucleus.

So, let's get rid of it.





- Cross-section is extremely well predicted by the SM
- ~4000 times smaller than inclusive CC cross-section
- Radiative corrections important at the few % level
- J Park et al, Phys.Rev.D 93 (2016) 11, 112007
- E. Valencia et al, *Phys.Rev.D* 100 (2019) 9, 092001
- S. Tomalak et al, Phys.Rev.D 101 (2020) 3, 033006
- Fermilab Joint Experiment Theory Seminar, Nov 2019, S. Tomalak, L. Zazueta, D. Jena





- Kinematics requires that  $E_{\rm e}\theta_{\rm e}^{\ 2}$  <  $2m_{\rm e}$ The signature is a very forward energetic electron with no hadronic recoil.
- Electron can radiate real photons. Important to include them in the cross-section.

#### data from ME anti-neutrino beam





- Two most important variables:
  - $E_{\rm e}\theta_{\rm e}^{2}$  <0.0032 GeV \* radian<sup>2</sup> dE/dx < 4.5 MeV/1.7cm
- Backgrounds constrained with a sideband fit in  $E_e \theta_e^2$  and dE/dx space



- Two most important variables:
  - $E_{0}^{2} < 0.0032 \text{ GeV/radian}^{2}$  dE/dx < 4.5 MeV/1.7cm
- Backgrounds constrained with a sideband fit in  $E_e \theta_e^2$  and dE/dx space



| Nu_e               | 1.02 ± 0.02 |  |  |  |
|--------------------|-------------|--|--|--|
| Nu_mu              | 0.93 ± 0.03 |  |  |  |
| Numu<br>coherent 1 | 1.63 ± 0.20 |  |  |  |
| Numu<br>coherent 2 | 2.12 ± 0.29 |  |  |  |
| Numu coh 3         | 1.81 ± 0.22 |  |  |  |
| Numu coh 4         | 2.11 ± 0.36 |  |  |  |
| Numu coh 5         | 1.24 ± 0.71 |  |  |  |
| Numu coh 6         | 0.80 ± 0.60 |  |  |  |

Coherent  $\pi^0$  production in

6 energy bins

Two most important variables:

- $E_{e}^{0}\theta_{e}^{2}$  <0.0032 GeV/radian<sup>2</sup> dE/dx < 4.5 MeV/1.7cm
- Backgrounds constrained with a sideband fit in  $E_e \theta_e^2$  and dE/dx space

distributions after sideband fit and signal selection





- Two most important variables:
  - $E_{0}^{2} = 0.0032 \text{ GeV/radian}^{2}$  dE/dx < 4.5 MeV/1.7cm
- Backgrounds constrained with a sideband fit in  $E_e \theta_e^2$  and dE/dx space

After background subtraction and efficiency correction.



#### 1.4% flat uncertainty to the detector mass added



 Uncertainty dominated by statistics. But, systematics < 10 %, especially at low electron energy where most events are.

### Constraining the flux

Bayes' theorem allow us to infer a new prediction of the flux given a measurement that uses our current prediction



### Constraining the flux

### Likelihood of our data

$$P(N_{\nu e \to \nu e}|M) = \frac{1}{(2\pi)^{K/2}} \frac{1}{|\Sigma_{\mathbf{N}}|^{1/2}} e^{-\frac{1}{2}(\mathbf{N} - \mathbf{M})^T \Sigma_{\mathbf{N}}^{-1}(\mathbf{N} - \mathbf{M})}$$

- N is a vector containing the bin content of the measured energy spectrum of given process
- M is the same as N but for the MC prediction
- $\Sigma_N$  is the covariance matrix of the uncertainties of N
- K is the number of bins of the spectrum

#### This is calculated for each universe of the flux error band

### Constraining the flux

#### data from ME anti-neutrino beam





- These plots have a single constraint from neutrino electron scattering in the ME anti-neutrino beam configuration
- We also have a similar measurement in the ME neutrino beam configuration
- And, there is one more thing too...

### One last thing: inverse muon decay

$$\nu_{\mu}e^{-} \rightarrow \mu^{-}\nu_{e}$$

- Similar to the neutrino electron elastic scattering, but with a very forward muon in the final state
- Threshold is ~11 GeV, so this process constrains the high energy component of the flux. Only sensitive to muon neutrinos.



### One last thing: inverse muon decay

$$\nu_{\mu}e^{-} \rightarrow \mu^{-}\nu_{e}$$

- Similar to the neutrino electron elastic scattering, but with a very forward muon in the final state
- Threshold is ~11 GeV, so this process constrains the high energy component of the flux. Only sensitive to muon neutrinos.





$$\mathscr{F}(E_{\mu}, \theta_{\mu}) \equiv \frac{E_{\mu} \frac{\theta_{\mu}^{2}}{1 \operatorname{radian}^{2}}}{1 - \frac{E_{\mu}}{E_{\mu}^{\max}}},$$

127 (56) IMD events in the FHC (RHC) beams.

### A combined constraint



### Covariance matrix



### The effect of different constraints



### Combined results





### Constrained flux





### Constrained flux





### Post-constraint uncertainties (%)

anti-v focused beam ("RHC")

anti- $v_{_{\mu}}$ anti- $v_{_{\mu}}$ anti- $v_{_{\mu}}$ anti- $v_{\rm e}$ anti- $v_{\rm e}$  $\nu_{\sf e}$ A priori 7.76 11.12 7.81 11.91 7.62 12.17 7.52 11.73 Uncertainty FHC 6.11 6.30 8.50 3.90 8.37 3.94 5.811 8.68 RHC 4.92 8.07 4.98 9.19 5.88 8.36 5.68 8.64 FHC+RHC 4.68 5.56 4.62 7.80 3.56 7.15 3.58 7.84 FHC+RHC+IMD 4.66 5.20 4.56 6.08 3.27 6.98 3.22 7.54

ν focused beam ("FHC")

#### Conclusions

- MINERvA's flux constraint uniquely combines a sophisticated and well tuned beam-line
   MC with in-situ data
- First ever joint constraint of a neutrino and anti-neutrino beam using neutrino electron scattering and inverse muon decay.
- Uncertainties beaten down to 3.3% and 4.7% for numu and anti-numu in the FHC and RHC beams, respectively.
- Statistics limited.
- Little shape information.
- A detector with very good angle and energy resolution will be able to do even better by constraining the shape of the flux.
  - For example, DUNE's LAr near detector: C. Marshall, et al *Phys.Rev.D* 101 (2020) 3, 032002
  - Huge sample. 22000 events events in 30t of LAr in 5 years of running.
- This is effectively the end of MINERvA's long flux campaign. Plan is to release results for NuMI on-axis (shown today) as well as off-axis locations.
- In principle, these results could also be rephrased to constrain the flux for LBNF/DUNE.
   That may be something we will try.