

Poster ID - #204

NuFact 20|21 Exploring Earth's Matter Effect in High - Precision Long - Baseline Eperiments Masoom Singh^{1,2}, Sanjib Kumar Agarwalla^{1,3,4}

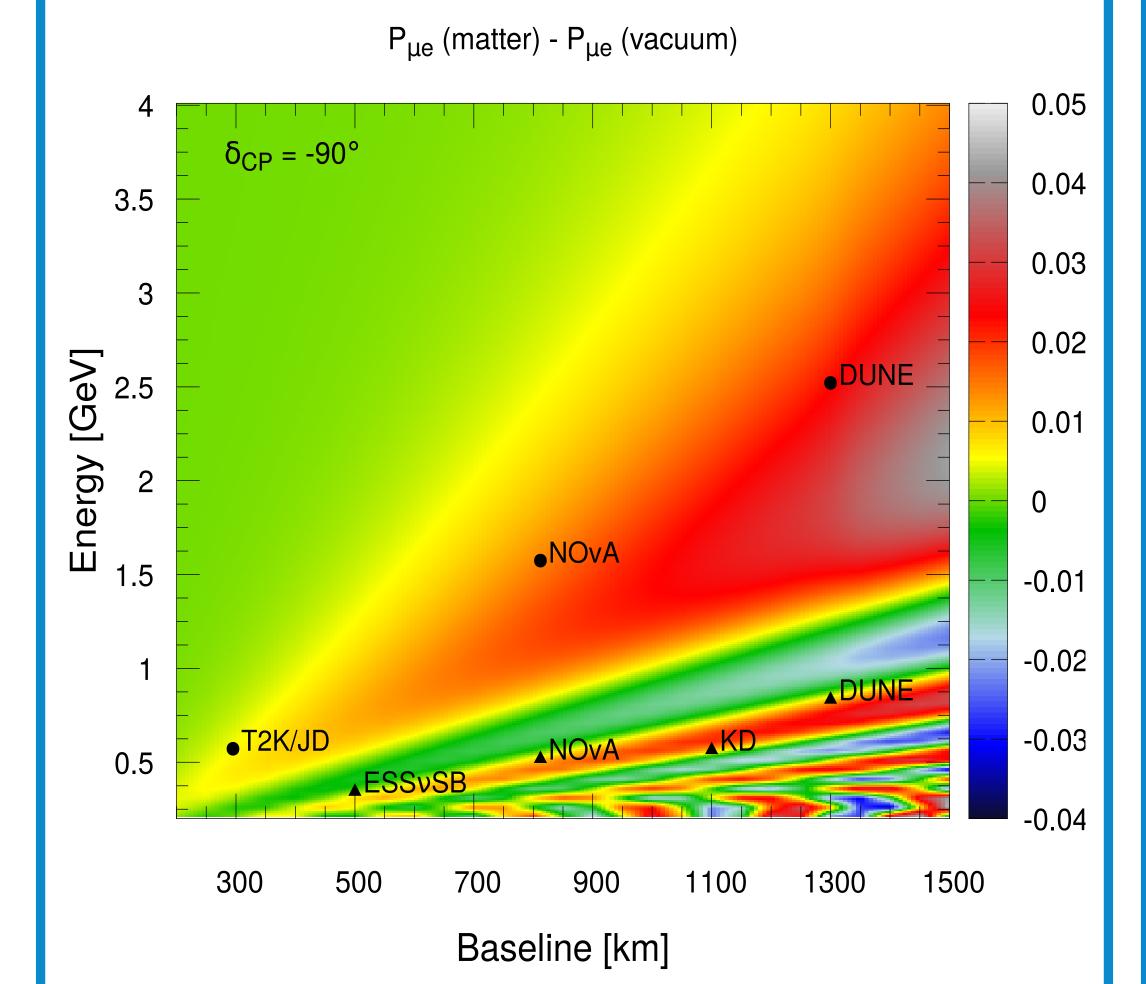
 $^{\circ}$ IOP, Bhubaneswar, India, 2 Utkal University, Bhubaneswar, India 3 HBNI, Mumbai, India 4 ICTP, Trieste, Italy NuFact 2021 Workshop

masoom@iopb.res.in

1. MOTIVATION

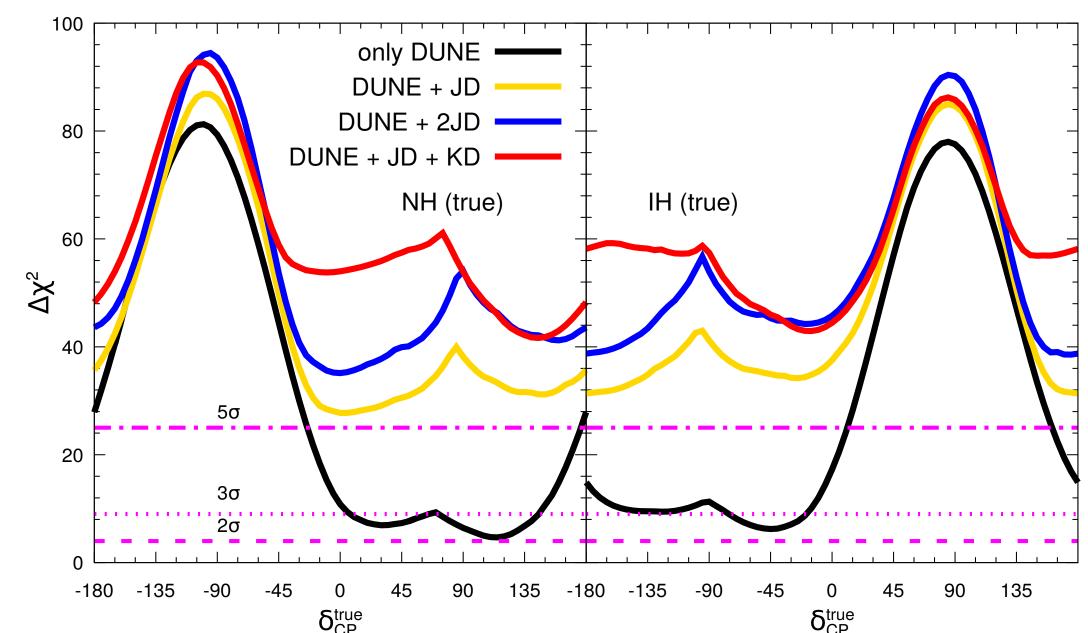
DUNE has substantial matter effect because of 1300 km baseline. In this work, we explore:

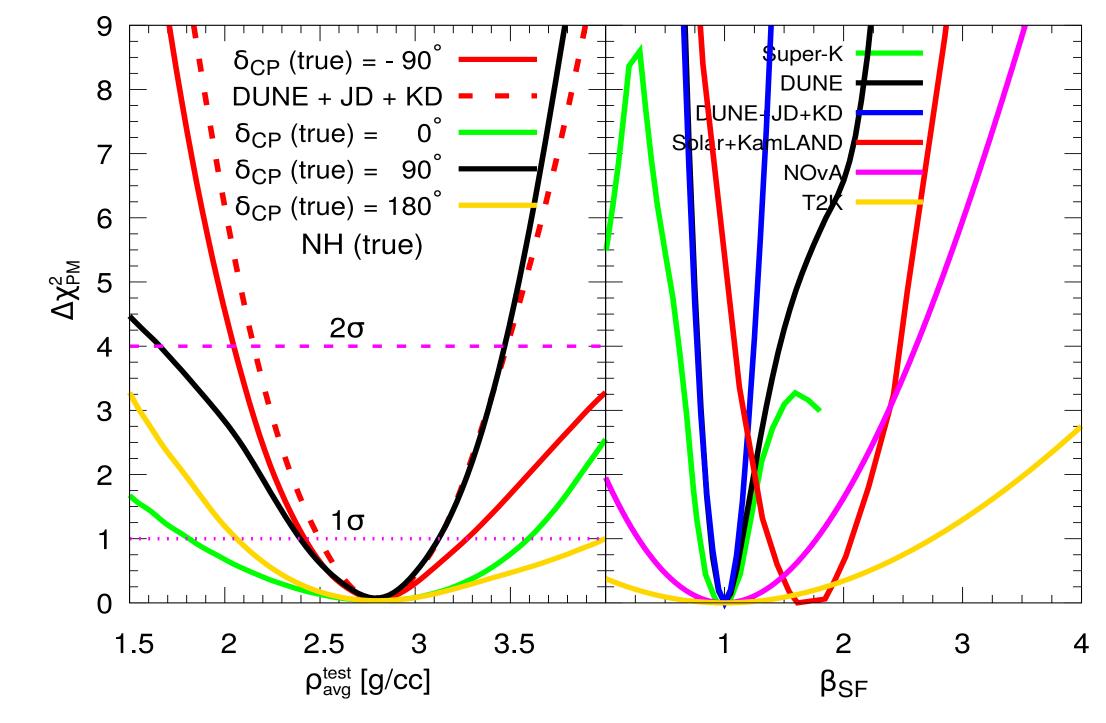
- capability of DUNE in establishing matter effect by excluding vacuum hypothesis
- precision in the measurement of lineaveraged constant Earth matter density (ρ_{avg})
- new degeneracies in $(\rho_{\text{avg}} \delta_{\text{CP}})$ and $(\rho_{\text{avg}} \theta_{23}$) planes


To lift these degeneracies, data from the upcoming T2HK (JD) and T2HKK (KD) are incorporated.

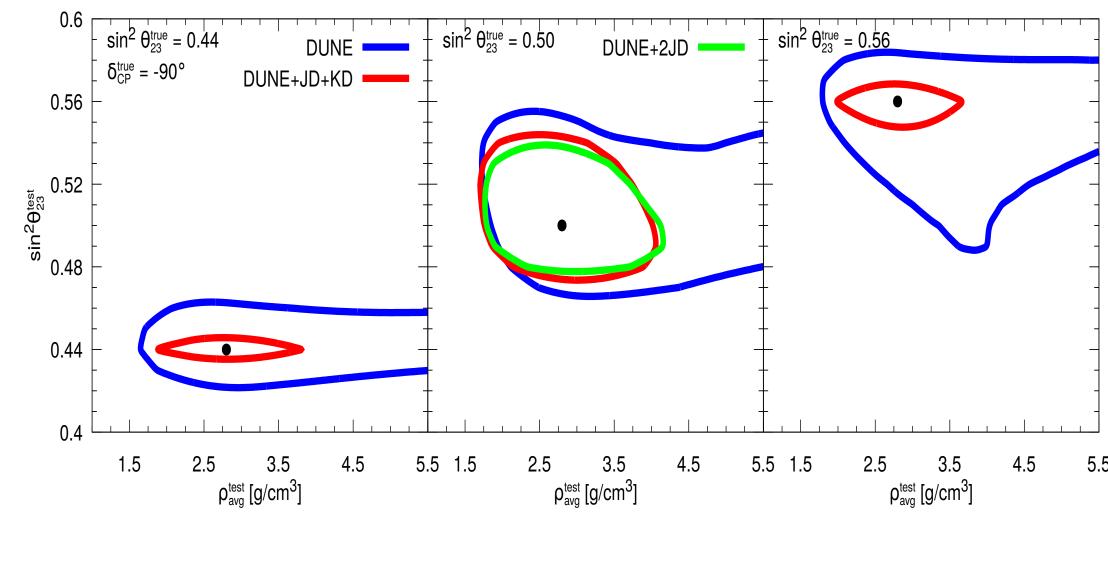
2. MATTER vs. VACUUM

- $\Delta P \approx [P_{\nu_{\mu} \to \nu_{e}}^{\text{mat}} P_{\nu_{\mu} \to \nu_{e}}^{\text{vac}}]_{\text{leading term}}$
- Expanding $(1-\hat{A})^{-2}$ and considering terms upto second order in \hat{A} :


$$\Delta P = \frac{1}{2} \sin^2 \theta_{23} \sin^2 2\theta_{13} \left[(3\hat{A}^2 + 2\hat{A} - 1) + \cos[(2n+1)\pi\hat{A}](3\hat{A}^2 + 2\hat{A} + 1) \right],$$


$$\hat{A} = \left(\frac{0.76 \times 10^{-4} (\text{eV}^2)}{\Delta m_{31}^2}\right) \times \left(\frac{\rho_{\text{avg}}}{\text{g/cm}^3}\right) \times \left(\frac{\text{E}}{\text{GeV}}\right)$$

 ΔP as a function of baseline and neutrino energy [1]. Solid circle (triangle) shows ΔP at first (second) oscillation maxima.


3. OUR FINDINGS

- DUNE DUNE DUNE+JD+KD $\sin^2 \theta_{23}^{\text{true}} = 0.50$ DUNE+2JD $\delta_{CP}^{true} = 0^{\circ}$
- Allowed region in $ho_{
 m avg}^{
 m test} \delta_{
 m CP}^{
 m test}$ plane at 3σ (1 d.o.f.) for four different choices of $\delta_{\rm CP}^{\rm true}$ in DUNE (blue), DUNE+JD+KD(red).

- Establishing Earth matter effect
- Capability of different set-ups to exclude vacuum solution as a function of $\delta_{\mathrm{CP}}^{\mathrm{true}}$ at maximal $\theta_{23}^{\text{true}}$. True NH (IH) in left (right) panel.
- At 5σ C.L.: vacuum is excluded $\sim 46\%$ for CP phases in DUNE, while
 - $\sim 100\%$ in combined set-ups.
- Precision in ρ_{avg}
- Left panel : Relative 1σ precision in $\rho_{\rm avg}$ in DUNE is 15% (13%) for $\delta_{CP}^{true} = -90^{\circ}$ (90°) while in DUNE + JD + KD, it is 23% for $\delta_{\rm CP}^{\rm true}$ = -90° with true NH.
- Right panel : If $\delta_{\rm CP}^{\rm true} = -90^{\circ}/90^{\circ}$, DUNE is better than Solar + KamLAND [2], Super-K [3], and ongoing T2K, $NO\nu A$.
- Combined data from DUNE and T2HKK achieves the best precision.
- Exploring the degeneracies

- Allowed region in $\rho_{\text{avg}}^{\text{test}} \theta_{23}^{\text{test}}$ plane at 3σ (1 d.o.f.) for $\delta_{\rm CP}^{\rm true} = -90^{\circ}$
- Uncertainty in $\rho_{\text{avg}}^{\text{test}}$ is not much affected by choices of $\sin^2 \theta_{23}$, but is significantly dependent on the uncertainty in δ_{CP} .
- Complementarity between DUNE and T2HKK helps in incredibly reducing the degenracies in both the planes.

4. KEY TAKEAWAYS

- Irrespective of the values of oscillation parameters, DUNE establishes Earth's matter at more than 2σ C.L.
- Combined data from DUNE and T2HKK enhances this measure to more than 5σ C.L. no matter what the choices of mass ordering, δ_{CP} , and θ_{23} .
- If in Nature, $\delta_{CP}^{\text{true}} = -90^{\circ}/90^{\circ}$, DUNE + T2HKK followed by DUNE outperforms Super-K, solar+KamLAND and other long-baseline (T2K and NO ν A) experiments in measuring ho_{avg}
- Understanding the degeneracies in $(\rho_{\rm avg} - \delta_{\rm CP})$ and $(\rho_{\rm avg} - \theta_{23})$ planes are crucial to correctly assess the outcome of DUNE.
- Complementarity between DUNE and T2HKK data significantly minimizes dependency of ρ_{avg} on the uncertainties of $\delta_{\rm CP}$ and θ_{23} .

5. REFERENCES

-] Masoom Singh et al. Matter effect and associated degeneracies in DUNE. IP/BBSR/2021-1 (2021).
- [2] M.Maltoni and A.Yu.Smirnov. EPJ., A52(4):87,
- [3] K.Abe et al. Phys.Rev., D97(7):072001, 2018

6. ACKNOWLEDGEMENT

- DST/INSPIRE Fellowship/2018/IF180059.
- SAMKHYA HPC at IOP, Bhubaneswar.
- Prof. S.Mahapatra from Utkal University for useful discussions.

The 22nd International Workshop on Neutrinos from Accelerators 6-11 September, 2021