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Muon Collider

 Growing interest in muon collider as a future facility in Europe
 Only lepton collider with potential to go beyond 3 TeV
 At ~14 TeV, physics reach comparable to 100 TeV protons
 Compact footprint
 Efficient electrical power consumption even at high energy
 Potential for phased construction with physics at each stage

3 TeV
Muon
Collider
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Muon Collider Facility

 Reminder – muon collider facility (proton-based)
 Protons on target in high-field solenoid → pions, muons et al.
 Clean up beam impurities
 Capture muons longitudinally
 Transverse and longitudinal cooling
 Acceleration
 Collider ring
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A little history

 Theoretical studies demonstrated essential feasibility to build a 
muon collider

 Target design
 Beam clean up
 Practical cooling options to high luminosity
 Assessment of neutrino radiation issues
 Understanding of collider backgrounds
 Demonstration of high field RF necessary for muon cooling

 Hardware work to demonstrate key technologies
 Studies of high power targetry
 Muon Ionisation Cooling Experiment
 Demonstration of high gradients in NC RF cavities
 EMMA test for rapid acceleration
 Synchrotron magnet studies
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Task – muon capture and cooling

 Establish a single baseline cooling lattice
 Optimise the existing designs
 Support and integrate novel technologies

 Build on MICE, MuCOOL and targetry R&D
 Prototyping of realistic RF cavities and operation in fields
 Engineering and construction of more challenging cooling cell
 Demonstrate 6D cooling, reacceleration and multiple cooling cells
 Understand effects of beam on target and required radiation 

shielding of magnets
 Outline our baseline
 Highlight some new ideas

 Many are work in progress!
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Task – muon capture and cooling

 Baseline concept
 Heavily influenced by previous studies 

(MAP, NF)!
 Graphite target in high field solenoid

 Target horn(s) as backup
 Chicane and proton absorber to clean 

beam
 Buncher and phase rotation to make 

bunches
 Initial dual-sign cooling
 Charge separator
 Rectilinear 6D cooling
 Bunch merge
 Rectilinear 6D cooling
 Final cooling
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Target

 15 m long high field solenoid
 15-20 T pion capture region tapering to 1.5 T
 Shielding is very challenging

 Graphite target
 Multi-MW proton beam with ~ ns bunch length → shock load
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Particle selection

 Reject beam impurities
 Solenoid chicane

 Reject high momentum particles
 Extremely good acceptance below 

threshold
 Beryllium absorber

 Absorbs low momentum protons
 Muons relatively unperturbed

Muon amplitude initially 50 mm

https://map-docdb.fnal.gov/cgi-bin/ShowDocument?docid=4355 (D. Neuffer)
Proc. IPAC2014 TUPME022 (S. Berg)
https://journals.aps.org/prab/pdf/10.1103/PhysRevSTAB.16.040104 (C. Rogers et al)

https://map-docdb.fnal.gov/cgi-bin/ShowDocument?docid=4355
https://journals.aps.org/prab/pdf/10.1103/PhysRevSTAB.16.040104
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Buncher/Phase Rotator

 Drift to develop energy-time relation 
 Buncher adiabatically ramp RF voltages
 Phase rotator misphase RF

 High energy bunches decelerated
 Low energy bunches accelerated

 Many RF frequencies required
 Bunch separation changes along the 

length of the front end
 Nb: plots to right were made without 

chicane
 This would remove the high p muons

 Uniform solenoid field
 Transport very high emittance muon 

beam
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Absorber

 Beam loses energy in absorbing material
 Absorber removes momentum in all directions
 RF cavity replaces momentum only in longitudinal direction
 End up with beam that is more straight

 Multiple Coulomb scattering from nucleus ruins the effect
 Mitigate with tight focussing
 Mitigate with low-Z materials
 Equilibrium emittance where MCS completely cancels the 

cooling

4D Ionisation Cooling

MUONSRF



  

 Initial beam is narrow with some momentum spread
 Low transverse emittance and high longitudinal emittance

 Beam follows curved trajectory in dipole
 Higher momentum particles have higher radius trajectory
 Beam leaves wider with energy-position correlation

 Beam goes through wedge shaped absorber
 Beam leaves wider without energy-position correlation
 High transverse emittance and low longitudinal emittance

6D Ionisation Cooling

Dipole
Wedge 
shaped 
absorber
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Initial Cooling

 Initial cooling to get muon beam to “manageable” emittance
 Simultaneously cool mu- and mu+ in the same lattice

 Initially too high emittance to split charges
 This is quite a challenge

 Rotating dispersion vector

cell cell End 
of lattice

https://map-docdb.fnal.gov/cgi-bin/ShowDocument?docid=4377 (Y. Alexahin)

https://map-docdb.fnal.gov/cgi-bin/ShowDocument?docid=4377


  13

Charge Separation

 Further cooling (and the collider) requires separation of mu+ 
and mu-

 Basic concept is to use a bent solenoid to introduce vertical 
dispersion

 Just like in the particle cleaning
 But now we must maintain the bunch structure

https://www.osti.gov/biblio/1113648 (C. Yoshikawa)

https://www.osti.gov/biblio/1113648
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Rectilinear cooling channel

 “Tilted solenoids” to induce dispersion
 Solenoids with added dipole coils might be more tunable

 Wedge-shaped absorbers
 Magnetic Fields up to ~ 14 T
 RF gradients up to ~30 MV/m at 650 MHz
https://journals.aps.org/prab/abstract/10.1103/PhysRevSTAB.18.031003  (D. Stratakis et al)

https://journals.aps.org/prab/abstract/10.1103/PhysRevSTAB.18.031003


  

Effect of harmonics

Mixing 
different 
harmonics of B
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Scaling
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Question: How
short can we 
make the cells?
How high field?
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Bunch merge

 Remember, the buncher/phase rotator 
made a bunch train of 21 bunches (or so)

 Combined longitudinal and transverse 
merge

 RF cavities do phase rotation on 21 bunch 
train to make 7 bunches

 Kick each bunch into 7 separate 
“trombone” arc

 Only 3 are shown
 Funnel bunches together transversely to 

make a single bunch

https://journals.aps.org/prab/abstract/10.1103/PhysRevAccelBeams.19.031001 (Yu Bao)

https://journals.aps.org/prab/abstract/10.1103/PhysRevAccelBeams.19.031001
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Final cooling

 Challenge is to get very tight focussing
 Go to higher fields and lower momenta

 Causes longitudinal emittance growth
 Chromatic aberrations introduce challenges

 Elaborate phase rotation required to keep energy spread small
 Move to low RF frequency to manage time spread

https://journals.aps.org/prab/abstract/10.1103/PhysRevSTAB.18.091001 (H. Sayed et al)

https://journals.aps.org/prab/abstract/10.1103/PhysRevSTAB.18.091001
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Emittance path
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Dual-sign horn (K. Yonehara)

 Idea to capture both pion signs using horns
 Horn is well-understood technology
 No need for SC magnets near to radiation source



  21

Improved Rectilinear Cooling
D Summers et al

 ABC

 Add extra rectilinear cooling stages
 Fields are still rather challenging
 Cell length is very short → rapidly varying fields
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Improved Final Cooling
B. Stechauner, E. Fol
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Improved Final Cooling
B. Stechauner, E. Fol

 More aggressive final cooling should be possible!
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“Potato slicer” - D. Summers et al

 ABC

 Add extra rectilinear cooling stages
 Fields are still rather challenging
 Cell length is very short → rapidly varying fields
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Frictional Cooling Scheme

Angela Papa (PSI) et al, Phys. Rev. Lett. 125, 164802, 2020

 Novel frictional cooling scheme constructed at PSI
 Yields very small emittances

 Rough estimate that transverse acceptance is ~ high enough
 More quantitative estimate would be beneficial

 Need to check time spread of beam
 Can we recapture in RF?

 Overall do we get required bunch compression?
 Qualitatively looks promising



  26

Cooling demonstrator

Cooling channel

Collimator

Pion 
source

Protons 

 Need for a technology demonstrator
 MICE showed engineering integration
 Demonstrated cooling principle in a single absorber with tight 

focus
 Seek now to concatenate several cooling cells
 Seek to demonstrate reacceleration
 Seek to demonstrate 6D cooling at low emittance
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Survey of Muon Beamlines

 Existing and proposed
 nuSTORM would be highest current high-energy muon beam

MC Front End Baseline MC Collider Rings

LEMMA

CERN M2

COMET II nuSTORM 
target and ring

nuSTORM
pion dump line

Pion/Muon 
beam power
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Conclusions

 Muon production for the muon collider has now a number of 
conceptual solutions

 Demonstration of the principle of ionisation cooling in MICE
 Seek to 

 optimise the designs
 Integrate into a single baseline
 Demonstrate integration of components
 Demonstrate cooling suitable for low emittance beams
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