

C. T. Rogers on behalf of the Muon Collider Collaboration ISIS

Rutherford Appleton Laboratory

Muon Collider

- Growing interest in muon collider as a future facility in Europe
 - Only lepton collider with potential to go beyond 3 TeV
 - At ~14 TeV, physics reach comparable to 100 TeV protons
 - Compact footprint
 - Efficient electrical power consumption even at high energy
 - Potential for phased construction with physics at each stage

Muon Collider Facility

Muon Collider

- Reminder muon collider facility (proton-based)
 - Protons on target in high-field solenoid → pions, muons et al.
 - Clean up beam impurities
 - Capture muons longitudinally
 - Transverse and longitudinal cooling
 - Acceleration
 - Collider ring

A little history

- Theoretical studies demonstrated essential feasibility to build a muon collider
 - Target design
 - Beam clean up
 - Practical cooling options to high luminosity
 - Assessment of neutrino radiation issues
 - Understanding of collider backgrounds
 - Demonstration of high field RF necessary for muon cooling
- Hardware work to demonstrate key technologies
 - Studies of high power targetry
 - Muon Ionisation Cooling Experiment
 - Demonstration of high gradients in NC RF cavities
 - EMMA test for rapid acceleration
 - Synchrotron magnet studies

Task - muon capture and cooling

- Establish a single baseline cooling lattice
 - Optimise the existing designs
 - Support and integrate novel technologies
- Build on MICE, MuCOOL and targetry R&D
 - Prototyping of realistic RF cavities and operation in fields
 - Engineering and construction of more challenging cooling cell
 - Demonstrate 6D cooling, reacceleration and multiple cooling cells
 - Understand effects of beam on target and required radiation shielding of magnets
- Outline our baseline
- Highlight some new ideas
 - Many are work in progress!

Task - muon capture and cooling

- Baseline concept
 - Heavily influenced by previous studies (MAP, NF)!
- Graphite target in high field solenoid
 - Target horn(s) as backup
- Chicane and proton absorber to clean beam
- Buncher and phase rotation to make bunches
- Initial dual-sign cooling
- Charge separator
- Rectilinear 6D cooling
- Bunch merge
- Rectilinear 6D cooling
- Final cooling

Target

- 15 m long high field solenoid
 - 15-20 T pion capture region tapering to 1.5 T
 - Shielding is very challenging
- Graphite target
 - Multi-MW proton beam with ~ ns bunch length → shock load

Particle selection

Collider oration

- Reject beam impurities
- Solenoid chicane
 - Reject high momentum particles
 - Extremely good acceptance below threshold
- Beryllium absorber
 - Absorbs low momentum protons
 - Muons relatively unperturbed

https://map-docdb.fnal.gov/cgi-bin/ShowDocument?docid=4355 (D. Neuffer)

Proc. IPAC2014 TUPME022 (S. Berg)

https://journals.aps.org/prab/pdf/10.1103/PhysRevSTAB.16.040104 (C. Rogers et al)

Buncher/Phase Rotator

- Drift to develop energy-time relation
- Buncher adiabatically ramp RF voltages
- Phase rotator misphase RF
 - High energy bunches decelerated
 - Low energy bunches accelerated
- Many RF frequencies required
 - Bunch separation changes along the length of the front end
- Nb: plots to right were made without chicane
 - This would remove the high p muons
- Uniform solenoid field
 - Transport very high emittance muon beam

time

4D Ionisation Cooling

- Beam loses energy in absorbing material
 - Absorber removes momentum in all directions
 - RF cavity replaces momentum only in longitudinal direction
 - End up with beam that is more straight
- Multiple Coulomb scattering from nucleus ruins the effect
 - Mitigate with tight focussing
 - Mitigate with low-Z materials
 - Equilibrium emittance where MCS completely cancels the cooling

6D Ionisation Cooling

- Initial beam is narrow with some momentum spread
 - Low transverse emittance and high longitudinal emittance
- Beam follows curved trajectory in dipole
 - Higher momentum particles have higher radius trajectory
 - Beam leaves wider with energy-position correlation
- Beam goes through wedge shaped absorber
 - Beam leaves wider without energy-position correlation
 - High transverse emittance and low longitudinal emittance

Initial Cooling

coils: R_{in}=42cm, R_{out}=60cm, L=30cm; RF: f=325MHz, L=2×25cm; LiH wedges

- Initial cooling to get muon beam to "manageable" emittance
- Simultaneously cool mu- and mu+ in the same lattice
 - Initially too high emittance to split charges
 - This is quite a challenge
- Rotating dispersion vector

https://map-docdb.fnal.gov/cgi-bin/ShowDocument?docid=4377 (Y. Alexahin)

Charge Separation

- Further cooling (and the collider) requires separation of mu+ and mu-
 - Basic concept is to use a bent solenoid to introduce vertical dispersion
 - Just like in the particle cleaning
 - But now we must maintain the bunch structure

https://www.osti.gov/biblio/1113648 (C. Yoshikawa)

1

Rectilinear cooling channel

- "Tilted solenoids" to induce dispersion
 - Solenoids with added dipole coils might be more tunable
- Wedge-shaped absorbers
- Magnetic Fields up to ~ 14 T
- RF gradients up to ~30 MV/m at 650 MHz

https://journals.aps.org/prab/abstract/10.1103/PhysRevSTAB.18.031003 (D. Stratakis et al)

Effect of harmonics

Mixing different harmonics of B₂

Cooling: $\epsilon_{min} \sim \beta_{min}$

Aperture:

 $\epsilon_{\text{max}} \sim \beta_{\text{max}}$

$$B_z = B_0 \sin(kz) + B_1 \sin(2kz)$$

$$B_0 \rightarrow 2B0$$

$$B_1 \rightarrow 2B1$$

$$k \rightarrow 2k$$

Question: How short can we make the cells? How high field?

Bunch merge

- Remember, the buncher/phase rotator made a bunch train of 21 bunches (or so)
- Combined longitudinal and transverse merge
 - RF cavities do phase rotation on 21 bunch train to make 7 bunches
 - Kick each bunch into 7 separate "trombone" arc
 - Only 3 are shown
 - Funnel bunches together transversely to make a single bunch

https://journals.aps.org/prab/abstract/10.1103/PhysRevAccelBeams.19.031001 (Yu Bao)

Final cooling

- Challenge is to get very tight focussing
- Go to higher fields and lower momenta
 - Causes longitudinal emittance growth
 - Chromatic aberrations introduce challenges
 - Elaborate phase rotation required to keep energy spread small
 - Move to low RF frequency to manage time spread

https://journals.aps.org/prab/abstract/10.1103/PhysRevSTAB.18.091001 (H. Sayed et al)

Emittance path

Dual-sign horn (K. Yonehara)

FODO for Positive particles DOFO for Negative particles

- Idea to capture both pion signs using horns
 - Horn is well-understood technology
 - No need for SC magnets near to radiation source

Improved Rectilinear Cooling D Summers et al

- Add extra rectilinear cooling stages
 - Fields are still rather challenging
 - Cell length is very short → rapidly varying fields

Improved Final Cooling B. Stechauner, E. Fol

Improved Final Cooling B. Stechauner, E. Fol

More aggressive final cooling should be possible!

"Potato slicer" - D. Summers et al

- Use septa to split one $\epsilon_{xyz}=$ (90, 90, 850) micron bunch into 16 $\epsilon_{xyz}=$ (25, 25, 850) micron bunches. Fermilab fixed target switchyard used 8 electrostatic septa
- Use RF deflector cavities to form a 3.7 m long bunch train Follow CLIC test experience
- Snap bunch coalesce 16 bunches into one in a 21 GeV ring Rotate over a quarter synchrotron period and then drift Capture in a short wavelength RF bucket 87% longitudinal packing may be possible. Chandra Bhat Follow Tevatron experience

Frictional Cooling Scheme

- Novel frictional cooling scheme constructed at PSI
 - Yields very small emittances
- Rough estimate that transverse acceptance is ~ high enough
 - More quantitative estimate would be beneficial
- Need to check time spread of beam
 - Can we recapture in RF?
- Overall do we get required bunch compression?

Qualitatively looks promising

Angela Papa (PSI) et al, Phys. Rev. Lett. 125, 164802, 2020

Cooling demonstrator

- Need for a technology demonstrator
 - MICE showed engineering integration
 - Demonstrated cooling principle in a single absorber with tight focus
 - Seek now to concatenate several cooling cells
 - Seek to demonstrate reacceleration
 - Seek to demonstrate 6D cooling at low emittance

Survey of Muon Beamlines

- Existing and proposed
- nuSTORM would be highest current high-energy muon beam

Conclusions

- Muon production for the muon collider has now a number of conceptual solutions
- Demonstration of the principle of ionisation cooling in MICE
- Seek to
 - optimise the designs
 - Integrate into a single baseline
 - Demonstrate integration of components
 - Demonstrate cooling suitable for low emittance beams

