

NEUTRINO-INDUCED PROTON KNOCKOUT IN MICROBOONE

SAMANTHA SWORD-FEHLBERG ON BEHALF OF MICROBOONE NUFACT 2021 SEPTEMBER 8TH,2021

Phys. Rev. Lett. 123, 131801 (2019)

THE PHYSICS OF CROSS-SECTIONS

- Neutrino Cross-Sections can probe physics related to:
 - Neutrino Interaction Channels
 - Nuclear Properties of the Target Nucleus
 - Properties of Individual Nucleons

- All of this physics can be probed by looking at mesonless final states with any number of protons
- Selecting a specific number of protons allows us to probe specific neutrino interactions and nuclear physics
 - N Protons:
 - Probe all the neutrino interaction channels

- All of this physics can be probed by looking at mesonless final states with any number of protons
- Selecting a specific number of protons allows us to probe specific neutrino interactions and nuclear physics
 - N Protons:
 - Probe Fermi Motion
 - Probe FSIs

- All of this physics can be probed by looking at mesonless final states with any number of protons
 - I Proton:
 - QE Channel

- All of this physics can be probed by looking at mesonless final states with any number of protons
 - I Proton:
 - QE Channel
 - Single Proton Spin
 Structure

NC Channel: Proton Spin Structure

NEUTRINO INTERACTIONS + NUCLEAR EFFECTS

- All of this physics can be probed by looking at mesonless final states with any number of protons
 - **2** Protons:
 - MEC Channel

NEUTRINO INTERACTIONS + NUCLEAR EFFECTS

- All of this physics can be probed by looking at mesonless final states with any number of protons
 - 2 Protons:
 - MEC Channel
 - Short-Range Nucleon-Nucleon Correlations (SRCs)

HOW IS MICROBOONE POISED TO DO THIS?

 LArTPCs are well poised to study protons because of their great calorimetric reconstruction

MICRBOONE-NOTE-1056-PUB

HOW IS MICROBOONE POISED TO DO THIS?

LArTPC technology pushes the envelope of proton momentum reconstruction to record lows

TODAY'S TALK

Provide a **BRIEF** Introduction to the Proton Knockout Analyses of MicroBooNE:

- Charged-Current N Proton (CCNP): MICROBOONE-NOTE-1099-PUB
- Charged-Current Quasi-Elastic Like (CCQE-Like): <u>Phys. Rev. Lett. 125, 201803 (2020)</u>
- Charged-Current 2 Proton (CC2p): MICROBOONE-NOTE-1096-PUB
- Neutral-Current Elastic (NCE): <u>MICROBOONE-NOTE-1101-PUB</u>

CHARGED-CURRENT N PROTONS (CCNP)

- CCNP is sensitive to all the neutrino interaction processes and variety of nuclear processes
- MicroBooNE has an existing CCNP measurement of proton and muon kinematics: <u>Phys. Rev. D102, 112013</u> (2020)

- MicroBooNE has made significant updates since previous measurement:
 - MC simulation
 - Event reconstruction algorithms
 - Updated procedure for calculating systematic uncertainties
- ~4.2x more POT open to be utilized

MICROBOONE-NOTE-1099-PUB

 Goal of the new analysis is to extract the double differential crosssection as a function of proton and muon kinematics utilizing all of the new updates and more statistics

CCNP: SIGNAL DEFINITION MICROBOONE-NOTE-1099-PUB

I Muon

• 0.1 GeV/c $< P_{\mu}$

N Proton

0.25 < P_p < 1.2
 GeV/c

0 (anti) mesons

CCNP: EVENT SELECTION MICROBOONE-NOTE-1099-PUB

6.79 x 10²⁰ POT

From MicroBooNE's first 3 years of running

Efficiency: 36.6%

Purity: 77.4%

September 8th, 2021

CCNP: $COS(\theta_P)$ microboone-note-1099-pub

- Can measure the momentum and angle with respect to the beam direction of the lead proton candidate
- Plots show reconstructed proton angle in different bins of reconstructed proton momentum
 - See tension between data and MicroBooNE MC predictions

CCNP: FUTUREWORK MICROBOONE-NOTE-1099-PUB

- Extraction of the double-differential cross-sections to benchmark theoretical calculations
- Investigation of Single Transverse Variables
 (STVs) to characterize various nuclear effects
 Phys. Rev. D 103, 112009

CHARGED-CURRENT QUASI-ELASTIC LIKE (CCQE-LIKE) PHYS. REV. LETT. 125, 201803 (2020)

CCQE-LIKE PHYS. REV. LETT. 125, 201803 (2020)

- The dominant topology in the MicroBooNE data stream
- Goal of this analysis is to extract the differential crosssection as function of muon and proton kinematics

CCQE-LIKE: SIGNAL DEFINITION PHYS.REV.LETT. 125, 201803 (2020)

- I Muon
 - 0.1 GeV/c $< P_{\mu}$
- I Proton
 - 0.3 GeV/c < P_p
- 0 π[±]
 - 0.07 GeV/c < $P_{\pi\pm}$

CCQE-LIKE: ENHANCEMENT CUTS PHYS.REV.LETT. 125,201803 (2020)

- Non-collinearity requirement
 - $| \Delta \theta_{\mu,p} 90^{\circ} | < 55^{\circ}$
- Muon and proton must be coplanar relative to beam axis
 - |Δφ _{μ,p} 180°| < 35°</p>
- Small missing transverse momentum:
 - P_T = |P_T ^µ+ P_T ^p| < 0.35 GeV/c

CCQE-LIKE: INITIAL CROSS-SECTIONS PHYS.REV.LETT. 125,201803 (2020)

- Utilizes 4.59 x 10¹⁹ POT
 - From MicroBooNE's first year of running
- Efficiency: 19.6%
- Purity: 84.0%
- Improved modeling of forward going muons is needed

CCQE-LIKE: IMPROVED **CROSS-SECTIONS** PHYS. REV. LETT. 125, 201803 (2020)

- Restrict ourselves to $-0.65 < \cos(\theta_{\rm u}) < 0.8$
- See better agreement between data and MC.

Generators

CCQE-LIKE: THE FUTURE IS CCIPOП PHYS.REV. LETT. 125, 201803 (2020)

 The CCQE-Like analysis has concluded, but CCIp0π analysis is ongoing

CCIp0π utilizes:

- More statistics
- Improved MC models
- Updated event reconstruction tools
- Updated systematics procedure

			Integrated Cross Section $[10^{-38} \text{cm}^2]$						
			(Differential Cross Section χ^2 /d.o.f)						
			$-0.65 < \cos(\theta_{\mu}) < 0.95$			$-0.65 < \cos(\theta_{\mu}) < 0.8$			
	Da	ata $\text{CC1}p0\pi$ Integrated	4.93 ± 1.55			4.05 ± 1.40			
	Generators	GENIE Nominal	6.18	(63.2/28)		4.04	(30.1/27)		
		GENIE v3.0.6	5.45	(34.6/28)		3.66	(21.4/27)		
		NuWro 19.02.1	6.67	(76.7/28)		4.39	(29.9/27)		
		NEUT v5.4.0	6.64	(78.5/28)		4.39	(32.2/27)		
		GiBUU 2019	7.00	(82.2./28)		4.78	(40.0/27)		

ССІРОП : FUTURE WORK PHYS.REV.LETT. 125,201803 (2020)

- Goals of CCIp0π:
 - To extract double differential cross-sections

Also investigating the <u>STVs</u>

			Integrated Cross Section $[10^{-38} \text{cm}^2]$						
			(Differential Cross Section χ^2 /d.o.f)						
			-0.65 < 0	$\cos(\theta_{\mu}) <$	$-0.65 < \cos(\theta_{\mu}) < 0.8$				
[Da	ata $\text{CC1}p0\pi$ Integrated	4.93 ± 1.55			4.05 ± 1.40			
	Generators	GENIE Nominal	6.18	(63.2/28)		4.04	(30.1/27)		
		GENIE v3.0.6	5.45	(34.6/28)		3.66	(21.4/27)		
		NuWro 19.02.1	6.67	(76.7/28)		4.39	(29.9/27)		
		NEUT v5.4.0	6.64	(78.5/28)		4.39	(32.2/27)		
		GiBUU 2019	7.00	(82.2./28)		4.78	(40.0/27)		

CHARGED-CURRENT 2 PROTON (CC2P)

Sensitive
 to 2p2h Processes:
 MECs and SRCs

- Sensitive
 to 2p2h Processes:
 MECs and SRCs
 - Many different models exist for MEC

- Sensitive
 to 2p2h Processes:
 MECs and SRCs
 - Many different models exist for MEC
 - Many event generators do not take contributions from SRCs into account

September 8th, 2021

Two other
 measurements of CC2p
 events on argon exist,
 but both were statistically
 limited

- Two other measurements of CC2p events on argon exist, but both were statistically limited
 - ArgoNeuT:30
 CC2p Events

- Two other
 measurements of CC2p
 events on argon exist,
 but both were statistically
 limited
 - ArgoNeuT:30CC2p Events
 - MicroBooNE: 119 CC2p Events

MICRBOONE-NOTE-1056-PUB

34

- Analysis has Two Goals:
 - Determine variables sensitive to differences between MEC models
 - Extract the differential crosssection as function of these variables with higher statistics

MICRBOONE-NOTE-1056-PUB

35

CC2P: MEC STUDIES MICROBOONE-NOTE-1096-PUB

- Studied Events from 3 MEC
 Model Sets to find variables
 sensitive to differences between
 the models:
 - Empirical MEC + Lwellyn
 Smith QE + GENIE hA2018
 FSI
 - Nieves (QE + MEC) + GENIE hA2018
 - SuSAv2 (QE+MEC) + GENIE hN2018
- Opening angle between the protons in the lab frame (γ_{Lab})

CC2P: SIGNAL DEFINITION MICROBOONE-NOTE-1096-PUB

I Muon

• $0.1 < P_{\mu} < 1.2 \text{ GeV/c}$

2 Protons

- $0.3 < P_p < 1.0 \text{ GeV/c}$
- **0** π[±]
 - 0.065 GeV/c < $P_{\pi\pm}$
- Νο π⁰

CC2P: EVENT SELECTION MICROBOONE-NOTE-1096-PUB

- 6.79 x 10²⁰ POT
 - From
 MicroBooNE's first
 3 years of running
- Statistical uncertainties only
- Efficiency: I 3%
- Purity: 65.4%

- Data not displayed as systematic uncertainties yet to be evaluated
- CC2p (left, pink) and CCMEC (right, magenta) show slight preference of back-back protons

- CC2P: FUTURE WORK MICROBOONE-NOTE-1096-PUB
- Investigation of STVs (see backup slides)
 - Evaluation of systematic uncertainties
 - Extraction of the differential cross-sections
 - Development of model set in which contributions of SRCs are considered under Generalized Contact Formalism (GCF) Phys. Lett.B 780 211-215 (2018)

NEUTRAL-CURRENT ELASTIC (NCE) MICROBOONE-NOTE-II0I-PUB

NCE MICROBOONE-NOTE-1101-PUB

- The NC axial form factor of the proton , G_A^{NC} , has yet to be fully measured
- When $Q^2 = 0$, G_A^{NC} depends on g_A and Δs
- Conflicting measurements of Δs
 - BNL E734: <u>-0.15 ± 0.09</u>
 - MiniBooNE <u>-0.196 ±</u>
 <u>0.127 ± 0.041</u>

NC Channel: Proton Spin Structure

$$G_A^{NC}(Q^2 = 0) = \frac{1}{2}g_A - \frac{1}{2}\Delta s$$

NCE MICROBOONE-NOTE-1101-PUB

- Since MicroBooNE can reconstruct 300 MeV/c protons, we can get to Q² = 0.1 GeV²
 - Provides
 opportunity to
 measure Δs at
 lowest values of
 Q² to date

NC Channel: Proton Spin Structure

$$G_A^{NC}(Q^2 = 0) = \frac{1}{2}g_A - \frac{1}{2}\Delta s$$

43

NCE MICROBOONE-NOTE-1101-PUB

This analysis aims to extract the differential cross-section as function of Q^2 to determine Δs NC Channel: Proton Spin Structure

NCE: SIGNAL DEFINITION MICROBOONE-NOTE-1101-PUB

- I Proton 0.3 GeV/c $< P_p$
- 0 Muons 0.1 GeV/c $< P_{\mu}$
- 0 pions 0.065 GeV/c < $P_{\pi(\pm,0)}$
- Any number of neutrons
- True NCE
 - Determined from MC-Truth
- Struck nucleon is a proton
 - Determined from MC-Truth

NCE: EVENT SELECTION MICROBOONE-NOTE-1101-PUB

- 6.87 × 10²⁰ POT
 - From MicroBooNE's first 3 years of running
- Purity: 22.7%
- Efficiency: 37.7%

NCE: Q² MICROBOONE-NOTE-1101-PUB

- Q² is calculated from proton kinetic energy
- See good data-MC agreement across the range of Q²
- Minimum $Q^2 = 0.1 \text{ GeV}^2$
 - Significantly lower than other measurements in neutrino scattering experiments

NCE: FUTUREWORK MICROBOONE-NOTE-1101-PUB

- Future Work Will Include:
 - Updates to binning to reduce error caused by bins with low statistics
 - Improving purity by reducing backgrounds
 - Finalization of systematic uncertainties

SUMMARY

 Charged-Current N Proton (CCNP): MICROBOONE-NOTE-1099-PUB

 $0.65 \text{ GeV}/c \leq \text{reco} p_p < 0.70 \text{ GeV}/c$

- Charged-Current N Proton (CCNP): MICROBOONE-NOTE-1099-PUB
- Charged-Current Quasi-Elastic Like (CCQE-Like): Phys. Rev. Lett. 125, 201803 (2020)

- Charged-Current N Proton (CCNP): MICROBOONE-NOTE-1099-PUB
- Charged-Current Quasi-Elastic Like (CCQE-Like):
 Phys. Rev. Lett. 125, 201803 (2020)
- Charged-Current 2 Proton (CC2p): MICROBOONE-NOTE-1096-PUB

- Charged-Current N Proton (CCNP): MICROBOONE-NOTE-1099-PUB
- Charged-Current Quasi-Elastic Like (CCQE-Like): <u>Phys. Rev. Lett. 125, 201803</u> (2020)
- Charged-Current 2 Proton (CC2p): MICROBOONE-NOTE-1096-PUB
- Neutral-Current Elastic (NCE): <u>MICROBOONE-</u> <u>NOTE-1101-PUB</u>

SOME WORLD FIRSTS

- Charged-Current N Proton (CCNP): MICROBOONE-NOTE-1099-PUB
- Charged-Current Quasi-Elastic Like (CCQE-Like): Phys. Rev. Lett. 125, 201803 (2020)
- Charged-Current 2 Proton (CC2p): MICROBOONE-NOTE-1096-PUB
- Neutral-Current Elastic (NCE): <u>MICROBOONE-</u> <u>NOTE-1101-PUB</u>

BUT WAIT...THERE IS MORE!

- Charged-Current N Proton (CCNP): MICROBOONE-NOTE-1099-PUB
- Charged-Current Quasi-Elastic Like (CCQE-Like): Phys. Rev. Lett. 125, 201803 (2020)
- Charged-Current 2 Proton (CC2p): MICROBOONE-NOTE-1096-PUB
- Neutral-Current Elastic (NCE): <u>MICROBOONE-</u> <u>NOTE-1101-PUB</u>
- First double-differential crosssection of CCNP on argon First look at STVs for CCNP First single differential cross-٠ section of CCIp First look at STVs for CCIp First single differential crosssection of CC2p on argon First look at GCF generated events First look at STVs for CC2p ۲ Extraction of Δs from lowest Q^2 of any experiment yet

BUT WAIT...THERE IS MORE!

- Charged-Current N Proton (CCNP): MICROBOONE-NOTE-1099-PUB
- Charged-Current Quasi-Elastic Like (CCQE-Like): Phys. Rev. Lett. 125, 201803 (2020)
- Charged-Current 2 Proton (CC2p): MICROBOONE-NOTE-1096-PUB
- Neutral-Current Elastic (NCE): <u>MICROBOONE-</u> <u>NOTE-1101-PUB</u>

First double-differential cross-

These exciting results coming to a paper near you soon!

THANK YOU! EMAIL: FEHLBERG@NMSU.EDU SLACK: @SAMANTHA SWORD-FEHLBERG

S. SWORD-FEHLBERG

9/8/2021

ROYAL SOCIETY

BACKUP SLIDES

MICROBOONE

- Liquid Argon Time Projection
 Chamber (LAr TPC) at Fermilab
- Primary beam is BNB:
 - $< E_v > = 0.8 \text{ GeV}$
- 170 Tons of LAr (85 Active Tons)
- I79 Collaborators
 - 34 Institutions (8 non-U.S)
 - 45 Postdocs
 - 55 Graduate Students
- First neutrino event October 2015

59

MICROBOONE SIMULATED FLUX

CC2P MEC STUDIES: GENIE TAGS

- Empirical MEC + Lwellyn Smith QE + GENIE hA2018 FSI
 - GI8_02a_00_000
- Nieves (QE + MEC) + GENIE hA2018
 - GI8_10a_02_11a
- SuSAv2 (QE+MEC) + GENIE hN2018
 G21 11b 00 000

9/8/2021

61

Note: Leading and Recoil Proton Momentum added together