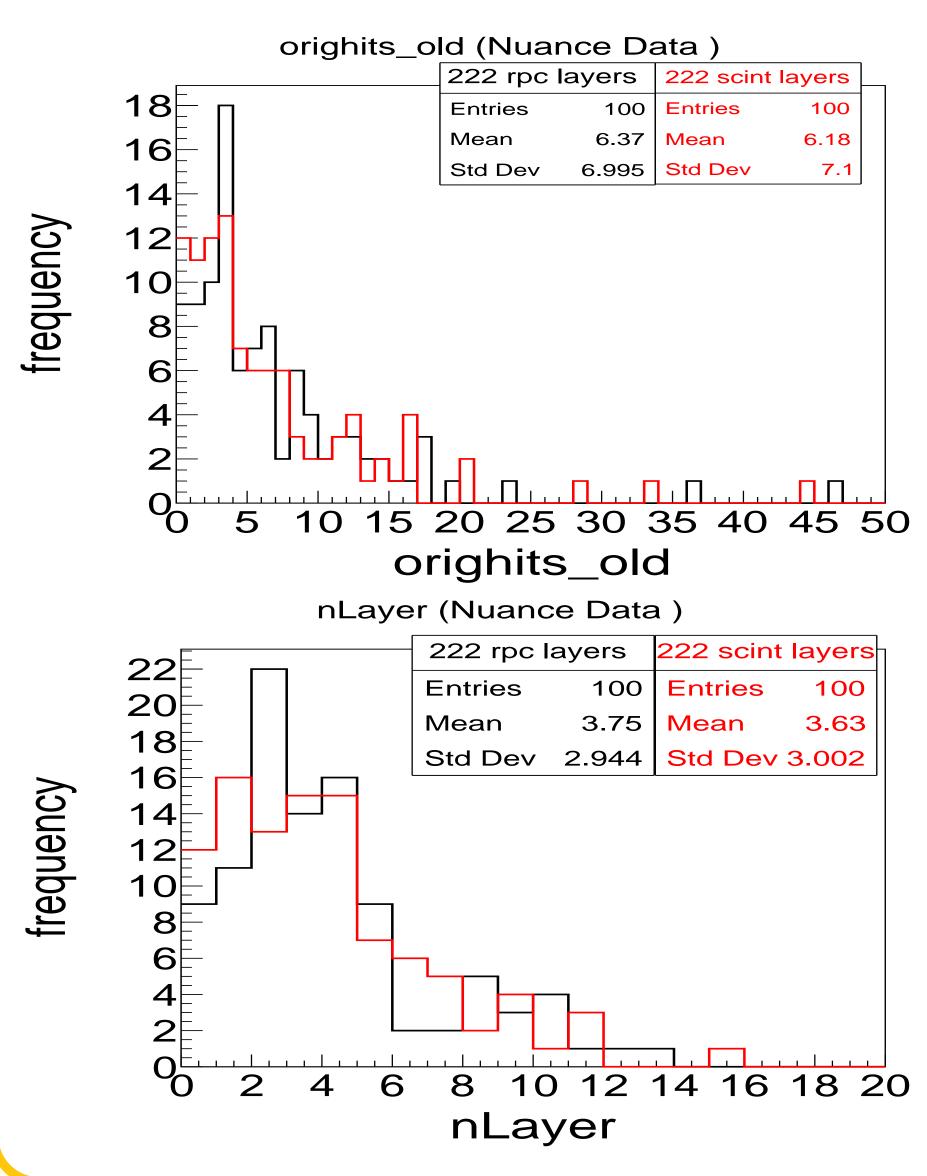
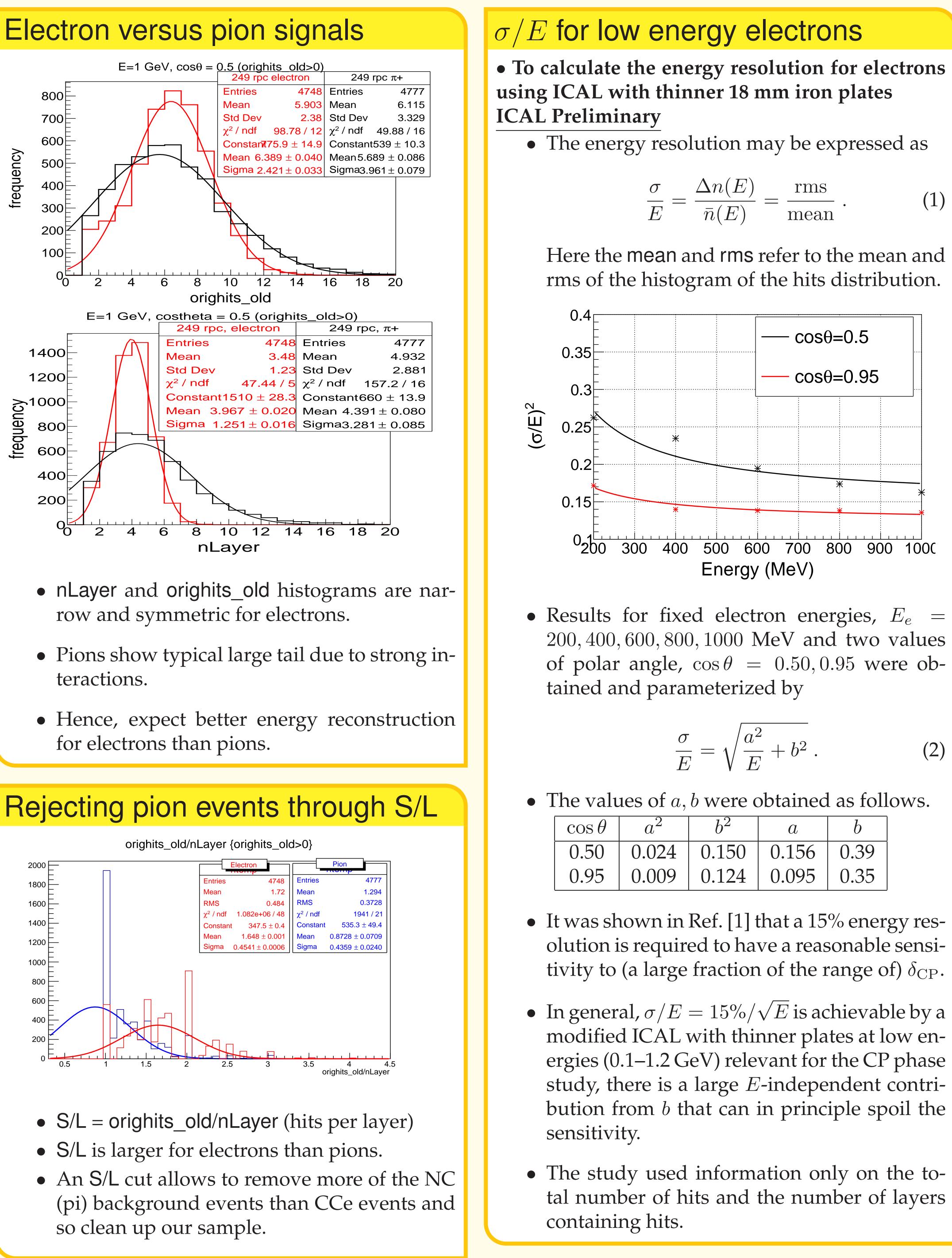
Simulation study of electron reconstruction with thin iron plates in ICAL/INO Honey*, V.M. Datar, D. Indumathi, S.M. Lakshmi, M.V.N.Murthy; Homi Bhabha National Institute, India NuFact 2021: The 22nd International Workshop on Neutrinos from Accelerators, 6–11 Sep, 2021

Motivation


It has been shown [1] that electrons from sub GeV energy atmospheric neutrino interactions are sensitive to leptonic δ_{CP} , independent of hierarchy. Muon neutrinos are also sensitive to $\delta_{\rm CP}$ at these energies, but the effect is less visible.


Introduction

The magnetised 50 kton iron calorimeter detector ICAL proposed to be built at INO was designed with a focus on detecting 1–20 GeV muons from charged current events of ν_{μ} (and $\bar{\nu_{\mu}}$) in the detector, to determine the neutrino mass ordering/hierarchy. Here we study the reach of ICAL through its possible modifications to detect electrons from CC ν_e events, in order to determine the sensitivity to the CP phase δ_{CP} .

RPC vs Scintillator

- Using thinner iron plates: 18 mm instead of design 56 mm.
- Also exploring choice of RPC and scintillator as active detector.
- Two parameters: maximum of hits in the *x* or *y*-planes (orighits_old) and number of layers (nLayer) are used for analysis.

$$\frac{\sigma}{E} = \frac{\Delta n(E)}{\bar{n}(E)} = \frac{\text{rms}}{\text{mean}} . \tag{1}$$

Here the mean and rms refer to the mean and rms of the histogram of the hits distribution.

200, 400, 600, 800, 1000 MeV and two values of polar angle, $\cos \theta = 0.50, 0.95$ were ob-

$$\frac{\sigma}{E} = \sqrt{\frac{a^2}{E} + b^2} . \tag{2}$$

$\cos \theta$	a^2	b^2	a	b
0.50	0.024	0.150	0.156	0.39
0.95	0.009	0.124	0.095	0.35

olution is required to have a reasonable sensitivity to (a large fraction of the range of) δ_{CP} .

modified ICAL with thinner plates at low energies (0.1–1.2 GeV) relevant for the CP phase study, there is a large *E*-independent contribution from *b* that can in principle spoil the

tal number of hits and the number of layers

Summary and Future Plans

References

Acknowledgement

We thank INO collaboration for valuable help for GEANT4 simulations and discussions. We thank NuFact2021 organisers for accepting this poster. E-mail: honey@tifr.res.in

• ICAL at INO was proposed to study the neutrino mass ordering through muons produced in CC interactions of ν_{μ} on iron in the 1–20 GeV energy range, *independent* of δ_{CP} .

• Sub-GeV atmospheric neutrinos (ν_e) sensitive to δ_{CP} , *independent* of mass ordering [1].

• A simulations study of the sensitivity of ICAL to sub-GeV electrons using thinner 18 mm iron plates (rather than design value of 56 mm) was done.

• The energy resolution, calculated using Eq. 2, are listed in the Table. An E-independent large value of *b* was found.

• Plan to include energy loss/deposited information in 10 mm scintillators, 18 mm iron with 12 mm air gap, to improve resolution.

• Complete a detailed analysis of sensitivity to $\delta_{\rm CP}$ for thin ICAL; probe other physics.

[1] S.M. Lakshmi et al., Hierarchy independent sensitivity to leptonic CP with atmospheric neutrinos, Phys. Rev. D100, 115027 (2019).

[2] S.M. Lakshmi et al., Simulation studies of hadron energy resolution as a function of iron plate thickness at INO-ICAL, JINST9,T09003(2014).

[3] A. Kumar et al. In: Pramana 88.5 (2017), p. 79

[4] T. Alion et al. (DUNE Collaboration), Experiment simulation configurations used in DUNE CDR, arXiv:1606.0955.

[5] R. Acciarri et al., LBNF and DUNE conceptual design report, Volume 2: The physics program for DUNE at LBNF, arXiv:1512.06148v2.

[6] M.Shiozawa (Super-Kamiokande Collaboration), Reconstruction algorithms in the SuperKamiokande large water Cherenkov detector, NIM Phys.Res., A 433, 240 (1999).