Development and optimization of the ENUBET beamline

M. Pari (University and INFN Padova)
on behalf of the ENUBET Collaboration
The ENUBET project

- Beamline (baseline option): **narrow band** beam at **8.5 GeV/c** secondaries with a **5-10% momentum bite**

[*] - $K_{e3} \ (K^+ \rightarrow \pi^0 e^+ \nu_e)$ **main source of positrons** at the decay tunnel walls: possibility of **direct estimation of ν_e flux**

- Muons at decay tunnel mainly from $K_{\mu2} \ (K^+ \rightarrow \mu^+ \nu_\mu)$ and $K_{\mu3}$: increased precision on ν_{μ_K} and ν_e flux

New

- Additional information on $\nu_{\mu\pi}$ from muon monitors along hadron dump (range-meter)

Complete overview: see Tuesday talk from G. Brunetti

$K_{e3} \ (K^+ \rightarrow \pi^0 e^+ \nu_e)$ main source of positrons at the decay tunnel walls: possibility of direct estimation of ν_e flux

Additional information on $\nu_{\mu\pi}$ from muon monitors along hadron dump (range-meter)

[*] A. Longhin, L. Ludovici, F. Terranova, EPJ C75 (2015) 155
The ENUBET project

- **Beamline (baseline option):** narrow band beam at 8.5 GeV/c secondaries with a 5-10% momentum bite

 Narrow-Band Off-Axis (NBOA) technique [*]
 - Full energy separation of $\nu_{\mu K}$ and $\nu_{\mu \pi}$ components
 - Direct angle-momentum correlations from two-body decays

Estimation of neutrino energy from impact radius @detector

[*] F. Acerbi et al., CERN-SPSC-2021-013
The ENUBET project

Beamline design and simulation

Assessment of systematics and performance

Detector development and characterization

See today talk from F.Iacob

See today talks from F.Pupilli and A.Branca
The ENUBET project

In this talk: focus on beamline, new and ongoing developments

- Baseline design: overview and results
- Recent results on target optimization
- Studies on proton extraction
- Magnetic horn and optimization
- Further beamline optimization
- Multi momentum beamline
The ENUBET beamline

Baseline option: **fully static beamline**
- Target and hadro-production: FLUKA ✓
- Transfer line:
 - optics optimization: TRANSPORT ✓
 - tracking & background: G4Beamline/G4 ✓
 - doses & neutron shielding: FLUKA ✓
 - systematics: GEANT4 [in progress]
- Neutron shielding added at hadron dump ✓
- Proton dump will require further eng. studies

Static = slow extraction (SX) of a few seconds required by pile-up constraints (differently from majority of nu-beams)

The CERN-SPS is a good candidate: for now SX of ~2 s of 400 GeV proton is assumed.

Other possible candidates are MI (FermiLab, 120GeV) and MR (J-PARC, 30 GeV).
Beamline: the baseline design

Design process:

- Tune beamline optic functions w/ TRANSPORT
- Iterate
- Implementate and extensive validation with G4bl/G4
- Iterate

→ Full tracking and interaction of beam w/ beamline elements fundamental to assess beamline performance

→ Positrons & muons from beamline represents important background, as ENUBET signals are e^+ and μ^+

→ After several beamline iterations: tight collimation plays an important role. W-positron filter also required

5 mm-thick W foil for target-pos suppression

Final pre-tunnel collimator blocks for background & halo suppression
Baseline design: irradiation

- Irradiation studies of the beamline performed using FLUKA: both charged part. & neutrons
- Hottest point: first collimator & quadrupole is 100-300 kGy
- New layer of borated-PE shielding for SiPMs & electronics: factor 18 dose reduction wrt previous case

Dose for 10^{20} POT [Gy]

1st Dipole
1st Q
2nd Dipole

Dose @2nd dipole significantly lower than @1st: potential use of super-conducting dipole for increased bending angle (less bkg collinearity, pure nu beam).

Studies are ongoing.
Baseline design: targets

Recent target optimization based on FLUKA & G4beamline model led to successful results and two candidates:

- **Graphite rod 70 cm-long by 6 cm-diameter**
 - Well studied target material and feasible implementation
 - Chosen as target for the baseline design

- **INCONEL rod 50 cm-long by 6 cm-diameter**
 - A relatively new solution: also nuSTORM is considering it
 - Observed promising reduction in positrons (& distr.) for a similar number of kaons wrt graphite.
 - Considered for alternative beamline designs: work ongoing
Baseline design: targets

Recent target optimization based on FLUKA & G4beamline model led to successful results and two candidates:

- **Graphite rod 70 cm-long by 6 cm-diameter**
 - Well studied target material and feasible implementation
 - Chosen as target for the baseline design

- **INCONEL rod 50 cm-long by 6 cm-diameter**
 - A relatively new solution: also nuSTORM is considering it
 - Observed promising reduction in positrons (& distr.) for a similar number of kaons wrt graphite.
 - Considered for alternative beamline designs: work ongoing
Baseline design: results & considerations

Results using new optimized graphite target: new baseline design with x2 Kaon flux wrt previous and x1.5 less e+ bkg

Assuming 500 ton neutrino detector at 50 m and CERN-SPS as driver:

\[10^4 \nu_{eCC} \text{ in } \sim 2 \text{ years of data taking (preliminary)}\]

Considerations:

Good performance, design converged to successful result, based on slow extraction

Important advantages: ✔ cost effective (std magnets) ✔ stable operation ✔ low rate

But:

Potential flux increase from magnetic horn is appealing

Crucial constraint: no fast extraction (!)
Proton extraction studies

Dedicated slow extraction studies at CERN-SPS: [*]

horn-compatible slow extraction

- From experimental campaign:
 - Implemented **new pulsed** slow extraction (burst-mode)
 - Optimized in operation down to 10 ms pulses @10 Hz

- From simulations:
 - 3-10 ms range of pulse lengths

General extraction method: could be used for other applications (e.g. cosmic veto)

[*] M. Pari, PhD Thesis (2020)
Proton extraction studies

Dedicated slow extraction studies at CERN-SPS: [*]

horn-compatible slow extraction

- From experimental campaign:
 - Implemented new pulsed slow extraction (burst-mode)
 - Optimized in operation down to 10 ms pulses @10 Hz

- From simulations:
 - 3-10 ms range of pulse lengths

General extraction method: could be used for other applications (e.g. cosmic veto)

[*] M.Pari, PhD Thesis (2020)

Dedicated study of frequency noise on std SX also recently finalized, showing possible improvements in spill quality

NuFact 2021, 09/09/2021, M.Pari
Magnetic horn

Previous proton extraction results open for a horn option:

- Developed simulation model of horn based on GEANT4
- Different designs available: MiniBooNE, double-parabolic, conic
- Genetic algorithm implemented for optimization of horn geometry (> 10 par)
- Basic hardware constraints enforced
- Developed fully automatic cluster-based optimization framework
- First candidates available

![Convergence graph showing O(100) iterations](image)

![Simulation models](image)
Magnetic horn

Results from standalone (i.e. first quad) horn optimizations show consistent flux gain of factor ~ 3 (@momentum bite):

- Solution based on INCONEL target seems promising: short external target & good horn parameters.
- Gain comes from squeezed angles due to horn focusing power.

Selected K at \star:
- Not dependent on full beamline
- Fast to compute
- Good for relative optimization

Selected K at \star:
- Requires full tracking down to tagger
- Yields exact flux gain between two configurations

Solution based on INCONEL target seems promising: short external target & good horn parameters.

Gain comes from squeezed angles due to horn focusing power.
Magnetic horn

But:

- This comes at expenses of increased beam dimension and very different initial phase space
- Current version of baseline beamline not optimized for this type of beam
- Started development of dedicated horn-beamline design: significant changes required wrt static design
Magnetic horn: roadmap

- New developed MADX framework for design and optimization of new beamline (goal: faster optics opt.)

- Particle distributions and gains will be assessed w/ G4 and compared w/ baseline design

- Goal: prove a substantial flux increase maintaining the narrow-band beam & bkg requirements of ENUBET

If confirmed further R&D on horn implementation (similar ESSnuSB requirements)
Further optimization

From the previous horn study: **optimization framework upgraded to be fully generic**

- Can be applied to any optimizable multi-dim. beamline design issue
- **First application:** fine tune beamline collimators for baseline static option
- First results promising: **significant bkg reduction** (preliminary & ongoing)

Main bkg particles suppressed

FoM:
Kaons/bkg hitting tunnel

~ 80 iterations

Optimized section

Signal not strongly affected

5 dimensions
The current ENUBET beamline generates neutrinos peaked in the DUNE region of interest (~4 GeV):

Would be useful being able to cover also different neutrino energy ranges
Multi-momentum beamline

To this end:

- Study on development of multi-momentum beamline currently ongoing in collaboration w/ CERN
- Goal is modifiable energy range so to cover full range of interest (HK R.o.I. included)

G4beamline model of multi-momentum beamline using existing CERN magnets geometries

Promising first estimations of K+ fluxes, background studies are ongoing

Optics design: TRANSPORT

Kaon fluxes (G4beamline, preliminary)

- Quadrupoles
- Dipoles
- Triplets

- TE 0.88 0.97
Conclusions and next steps

- Main design phase of ENUBET static beamline terminated:
 - Simulations all nearly completed
 - Satisfactory performance reached

- Promising results up to now: **project on schedule**

- The final systematics on the neutrino fluxes (electron and muon) are under evaluation and will be released by 2021 (see talk from A.Branca)

- Studies of non-baseline options proceed as planned, pointing to promising results and potential improvements:
 - Investigation of use of SC dipole after results from doses estimation are ongoing
 - Successful development of pulsed slow extraction opened for horn design option
 - Genetic opt. of horn pointed to ~3 flux gain: dedicated beamline underway
 - Application of genetic opt. on the static beamline for S/N increase
 - Studies on a multi-momentum beamline for different nu-energy ongoing

Updated fluxes and spectra with these final beamlines by 2022
Thank you for your attention
Backup
ENUBET: reach
A tolerable pile-up level at tagger (< 500 kHz/cm²): fast extraction of protons impractical \rightarrow slow extraction required

Baseline option: **fully static beamline**

Two possible slow-extraction schemes compatible:

- Static (standard)
- Pulsed (novel)

Could allow operation of magnetic horn: significant increase in flux.
Effect of horn on beam

Phase space after target

Phase space after horn

With horn
Without horn

NuFact 2021, 09/09/2021, M.Pari
Event reconstruction

Energy clusters deposited in each sub-module used to reconstruct an event:

→ Two main signals for ENUBET:
 - positrons from Ke3
 - muons from Kmu2/3

→ Basic discrimination idea: use tagger granularity to separate EM showers / Hadronic showers / MIP + photon veto