Canonical Angular Momentum Growth in MICE ‘Solenoid Mode’ with Muon Ionization Cooling

For Tom Lord (Warwick)
and Paul Kyberd (Brunel)
On behalf of the MICE collaboration
The principle of ionization cooling

- Competition between:
 - \(\frac{dE}{dx} \) [cooling]
 - MCS [heating]

Requires compact magnetic lattice

- Optimum:
 - Low \(Z \), large \(X_0 \)
 - Tight focus / large acceptance
 - \(H_2 \) gives best performance
• Ionization cooling essential:
 – Gives $x2-3$ in μ/proton
Angular momentum

Entering solenoid, muons get a “pt kick” proportional to radial position:

Angular momentum

Leaving solenoid, muons get a smaller kick ...

1. Flip/solenoid mode lattice performance may differ
2. Need to study performance of solenoid mode
Cooling Channel Lattice

- Spectrometer solenoids upstream and downstream provide uniform 2-4 T field for SciFi trackers / detector systems
- Focus coil module provides tight focussing on absorber
- Can flip field polarity across absorber, prevents canonical angular momentum buildup
Amplitude

- Transverse amplitude is distance of muon at point \(p = (x, p_x, y, p_y) \) from beam core in phase-space
 - Normalise phase space to RMS beam ellipse
- Related to transverse emittance by
 \[
 A_{\perp} = \epsilon_{\perp} (p - \bar{p})^T \Sigma^{-1} (p - \bar{p}),
 \]
 with \(\Sigma = 4D \) covariance matrix

- Conserved quantity in normal accelerators
- Ionization cooling reduces transverse momentum spread, reducing amplitude
- Mean amplitude \(\langle A_{\perp} \rangle \sim \text{RMS emittance} \)

T. Lord, Warwick
Amplitude Change Across Absorber

- No absorber → similar number of core muons
- With absorber → increase in number of core muons
 - Cooling signal
- Decrease in core muons for 3mm beam

140 MeV/c data

T. Lord, Warwick
Ratio of core densities

- Ratio of downstream over upstream CDFs
- Core density increase for LH$_2$ & LiH absorbers \rightarrow cooling
- More cooling at higher emittances
- Heating for 3mm beam

140 MeV/c data

T. Lord, Warwick
Canonical Angular Momentum Growth

- $L_{\text{canon}} \approx xP_y - yP_x + \frac{qr^2B_z}{2}$ (to first order)
- No absorber case shows little change
- Bias in canonical angular momentum distribution with LiH and LH$_2$

T. Lord, Warwick
Conclusions

- Ionization cooling measured in solenoid mode
 - Simulation gives good description of data
- MICE cooling demonstration encompasses:
 - A variety of solenoid- and flip-mode optical set-ups
 - A range of beam momentum and emittance
 - Two absorber types (liquid hydrogen, lithium hydride)
- Solid demonstration of ionization cooling principle
- Foundations for development of 6D-cooling demo