

- Pre-LS2 Performance
- Pre-LS2 Limitations
- Overcoming the Limitations:
 Upgrade & Consolidation

Pre-LS2 Performance

Fixed-target physics beams:

- o main users nTOF, EAST, SPS North Area beams, and others
- routinely delivered with highest availability and performance

LHC-type beams:

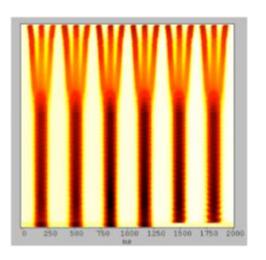
- zoo of flavors (PILOT and PROBE beams, individual bunch physics beam,
 25 ns spacing, 50 ns spacing, 100 ns spacing, BCMS*, ...)
- available on request with highest availability and exceeding today's specifications

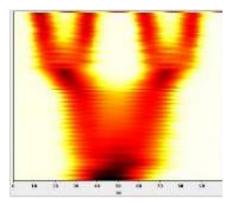
* Batch Compression, Merging and Splitting

Standard 25 ns Spacing Beam

The PSB receives two consecutive injections from Linac2, one filling all four rings with one bunch each (h=1) and a second injection filling only two of the four rings. With this scheme the PSB produces six bunches at 1.4 GeV energy, which are transferred in two extractions (4 + 2 bunches) to the PS.

In the PS the beam is accelerated to a top energy of 26 GeV and at the same time the bunches are longitudinally split. This scheme employs consecutively the RF harmonics 21, 42 and 84, which leads to a 12-fold splitting of each bunch. The resulting number of bunches produced from the six bunches coming from the PSB is hence 72.





25 ns Beam: RF Manipulations in the PS

from PSB:

1.4 GeV $\tau_{l} = 183 \text{ ns}$ $\epsilon_{l} = 1.27 \text{ eVs}$ $N_{b} = 16.5 \times 10^{11}$ # bunches: 6

extracted to SPS: 26 GeV $\varepsilon_{l} = 0.35 \text{ eVs}$ $N_{b} = 1.3 \times 10^{11}$ split factor: 12 # bunches: 72

RF harmonics @ 2.5 GeV: 7 - 14 -21

RF harmonics @ 26 GeV: 21 - 42 - 84

Main Limitations for LHC Type Beams

Brightness limit delivered by the PSB

transverse emittance depends linearly on the intensity

Space charge on the PS flat bottom

- large tune spread, limited by resonances
- need to keep bunch intensity low to preserve brightness

Longitudinal emittance at PS extraction

keep losses in the SPS under control; longitudinal stability

Today the injector complex provides LHC beams well within (and beyond!) the original specifications
The **High-Luminosity LHC Project** requests beams with parameters out of today's reach
The **LHC Injectors Upgrade (LIU) project** has been put in place to enable the injector complex to deliver the requested high-brightness beams

The LIU project consists of the following building blocks:

Linac4:

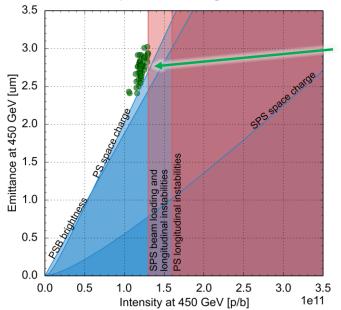
- higher energy reduces space charge effects at PSB injection
- o H- stripping injection is essentially loss free and allows to tailor beam emittance

PSB:

- energy upgrade from 1.4 GeV to 2.0 GeV reduces space charge effects at PS injection
- o numerous other upgrade items (power supplies, RF, instrumentation, ...)

PS:

- o increase of the injection energy to 2.0 GeV
- numerous other upgrade items (power supplies, RF, instrumentation, ...)


SPS:

o numerous other upgrade items (coating, RF, instrumentation, ...)

Pre-LS2 Performance Limitations

LHC beam parameters at the SPS extraction (450 GeV) resulting from intensity and brightness limitations of all injectors in the chain

Measured points:

$$N_b = 1.1 - 1.3 \times 10^{11} \text{ p/b}$$

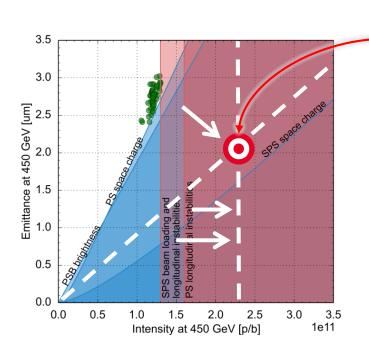
 $\varepsilon_{x,y} = 2.5 - 3.0 \mu\text{m}$

PSB

- brightness (multi-turn injection with Linac2)
- space charge at injection

PS

- brightness limited by space charge at injection
- intensity limited by longitudinal coupled bunch instability on the ramp and flat top


SPS

beam loading and longitudinal instabilities on the ramp and flat top

Overcoming the Limitations

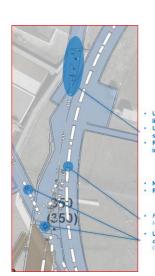
	N _b (x 10 ¹¹ p/b)	e _{x,y} (mm)
HL-LHC target	2.3	2.1
before upgrade	1.3	2.7

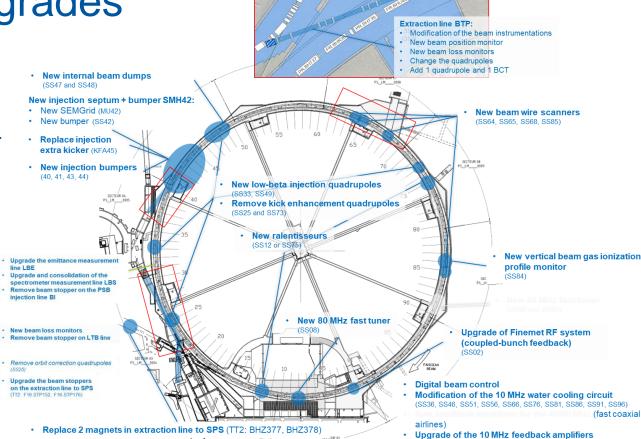
PSB

- brightness: H- injection with new Linac4
- space charge at injection: increased injection energy

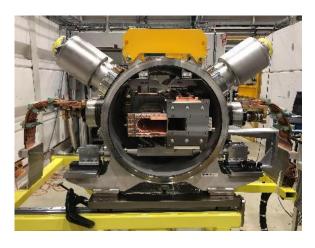
PS

- brightness: increased injection energy
- intensity: RF upgrades, impedance reduction, ...


SPS


beam loading and longitudinal instabilities on the ramp and flat top: RF upgrades, a-C coating, impedance reduction, ...

plus surface buildings, transfer lines, (de-)cabling...



· New injection

PS new 2 GeV Injection

new injection kicker

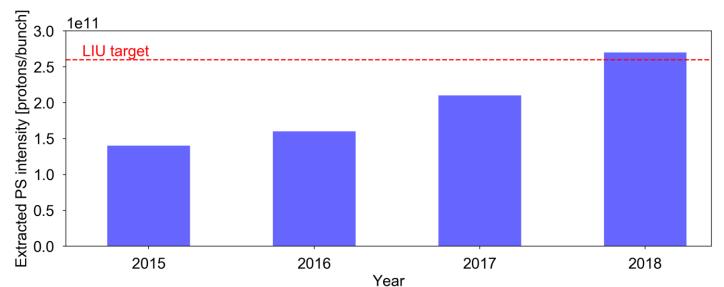
new injection bumpers

PS RF Upgrades

10 MHz feedback amplifiers

80 MHz fast tuner

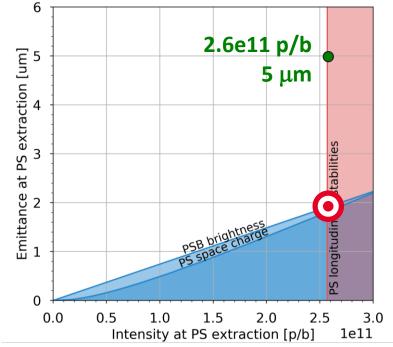
transverse damper amplifiers



wideband Finemet cavity

PS Intensity Reach

commissioning of coupled bunch feedback with broadband cavity and operational optimization new power converters for 40/80 MHz and broadband cavities + multiharmonic feedbacks and 40 MHz as Landau system + transverse optimisation



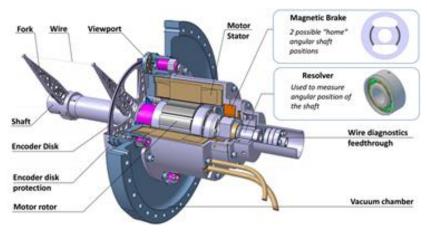
PS Intensity Reach vs Brightness

Broadband cavity to act as kicker for longitudinal feedback system in PS was studied during Run 1 and installed during LS1 (2013-14)

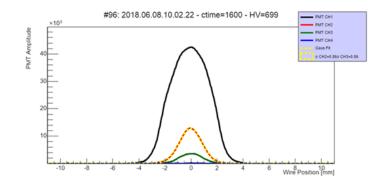
Thanks to operational deployment + further RF improvements, the LIU target intensity at PS extraction has been achieved

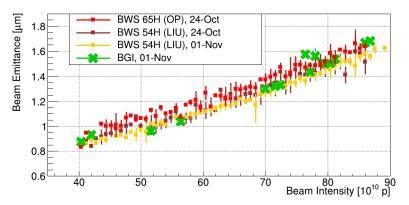
- LIU brightness only available after LS2 with Linac4 and 2 GeV PSB
- margin is slim, need to deploy other means if lower longitudinal emittance or higher intensity required to cope with SPS injection losses

Klaus Hanke


How to measure bright Beams?

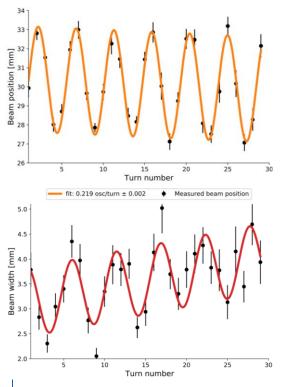
- new challenges for the precision of instruments
- turn-by-turn measurement gives indication of injection mismatch
- if possible non-destructive...

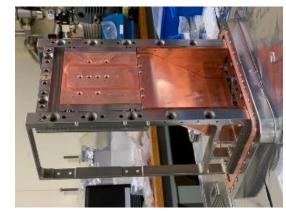




New Wire Scanners

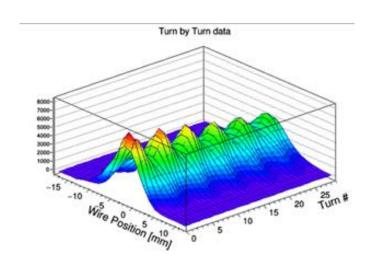
new generation of wire scanners

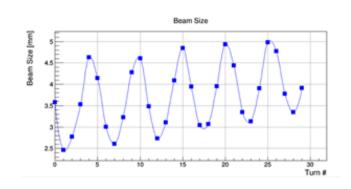




New Beam Gas Ionisation Monitor

horizontal monitor deployed (left), vertical monitor under construction (right)





New Turn-by-Turn Profile Monitor

SEM grid at injection equipped with dedicated electronics for turn-by-turn read-out

used for matching studies pre-LS2

Beam Intercepting Devices

Bright beams = new challenges!

PS Dump Core

PS Beam stoppers

PS "Ralentisseur"

Consolidation & Maintenance

Consolidation: Magnets

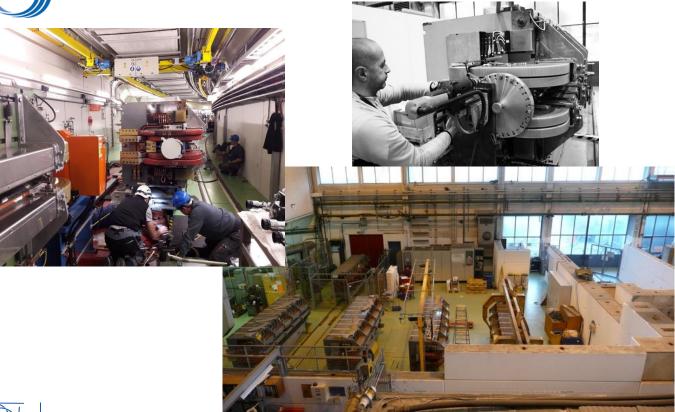
- the PS is running today still with the original magnets!
- several refurbishment campaigns

Ring: 100

Reference: 1

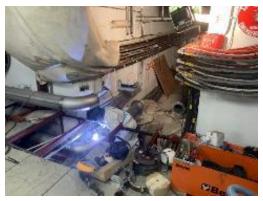
Spares: 4

Measurement: 1 (w/o PFW)


Total 106

2005-06	2006-07	2007- 08	2008-09	2013	2019
26	8	8	9	7	43

PS Main Unit Refurbishment

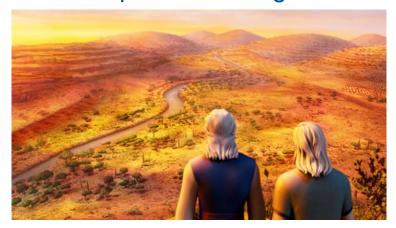

Consolidation: Cooling & Ventilation

Klaus Hanke

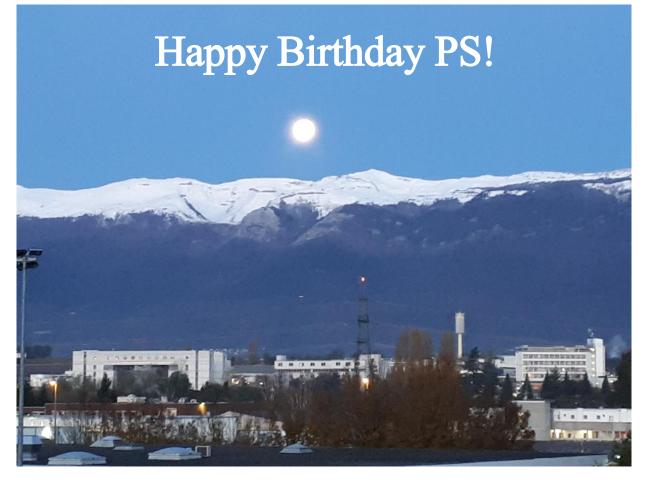
Cabling and De-Cabling

~ **63 000 cables** installed in the PS Ring and service buildings 1959 – 2019 **220 km** of obsolete cables removed during YETS and LS2

installation of 1400 new cables (110 km) for LIU ongoing



Ventrino (Fast Gration)


Post LS2

- Review November 2019: "LIU is considered completed"
- Every end is also a beginning...
- Interesting commissioning phase ahead of us
- Progressively ramping up the performance during run 3 and taking our machines into a new parameter regime

www.cern.ch