

Identifying mass composition of ultra high energy cosmic rays using deep learning

Converter: ensemble predictions

Dense 32V8

helium

model

data.

events.

Data: Monte-Carlo simulation for TA SD with

nitrogen, and iron; QGSJET-II-3 hadronic

Classifier: has 4 blocks, responsible for

Converter: trained on 10 000 ensembles of

Input - averaged predictions of the classifier for the ensemble and their dispersion. Output - fractions of elements in ensemble

kinds

4 primary particles; protons.

different

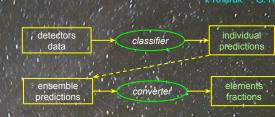
Dense 32 &

interaction

analyzing

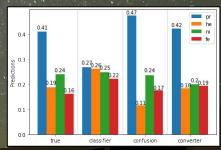
Ensemble prediction:

I. Kharuk^{1,2}, G. Rubtsov¹, M. Kuźnetsov^{1,3} for Telescope Array collaboration


Goal: identify mass composition of ultra-high-ehergy cosmic ravs

Problem: Air showers, initiated by cosmic rays, are highly stochastic. Hence very difficult to identify primary particle.

Solution: use two neural networks: 1) predict primary particles for individual events 2) estimate mass composition for ensembles of events based on the inference of the first nn


Classifier: individual predictions

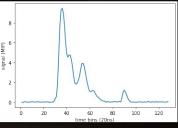
The method is general:

if individual events are subject to high variability, introduce a chain of two neural networks for obtaining accurate predictions for ensembles of events.

Example of predictions obtained by different methods

	9 K.	-	No. of Concession, Name		
energy bin, log se	cale 18-18.25	18-18.25	18-18.25	18-18.25	18-18.25
Averaged MA	E 0.072	0.053	0.048	0.043	0.038

MAE between true and reconstructed fractions of elements, averaged over the elements for different energy bins


¹Institute for Nuclear Research of the Russian Academy of Sciences

²Moscow Institute of Physics and Technology ³Université Libre de Bruxelles

> Telescope Array Surface Detector (covers ~700km², 1.2km spacing of detectors)

Each detector has 2 layers of 1.2cm thick plastic scintillator. Real-time calibration.

Detector's reading reduced to 128 time bins