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Introduction

• Monte Carlo simulations of calorimeter are
time demanding.

• GANs offer a fast alternative.
• Previous 2DGAN model already has high

fidelity.
• Can we get any improvement by building

GAN ensemble on top of it?

Training Data

• MC simulations of calorimeter.
• Images 25x25x25 pixels representing energy

depositions.
• Primary particle energy Ep = 2-500 GeV
• Large dynamic range of pixel values
• Training set of 200 000 images.

Ensemble structure

• Based on AdaGAN structure[2], training T GANs in a sequence.
• After each new GAN training, weighting training data based on

discriminator True/Fake predictions trained on true data and
images from previous generators.

• Uniform generator weights βt

• Sampling from ensemble: 1) Randomly choose a generator
based on generator weights β0, β1, …, βT. 2) Generate input Ep

from U(2,500). 3) Sample an image from the chosen generator.

Shower Shapes

• Relative energy profiles along axes

2DGAN Model[1]

• Conditional GAN architecture
• Ep as an additional input

• 2Dconv layers applied to 3 rotations of the
given sample

• Discriminator with auxiliary task
• Estimation of primary energy Ep

• Training time ~ 4 h (GPU Tesla V100 32GB)
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Sampling Fraction

• Sampling fraction = total
deposited energy / Ep

• Adding generators →
approaching true
sampling fraction
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• Log10 of average 
deposited energies

• Ratio of Real/Fake average
depositions

• Adding GANs – improvement in s. fraction.
• Significantly better simulation of depositions

around the image edges.

Conclusion


