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Introduction
The search for new particles requires robust classification
methods, with the ability to be optimised for unknown cross
sections and particle masses. We present a new loss func-
tion, Punzi-loss, based on the so-called Punzi figure of merit
(FOM) [1]. We refer to a neural network trained with the
Punzi-loss function as a Punzi-net, and investigate its appli-
cation to the search for invisible decays of the hypothetical
Z’ boson produced in the process e+e− → µ+µ−Z ’ at the
Belle II experiment [2].

Punzi-Loss Implementation

A figure-of-merit can be defined to describe the statistical
significance provided when certain selection criteria are ap-
plied to data. A standard FOM used in particle physics is,

FOM =
S(t)√

S(t) + B(t)
. (1)

Where S(t) and B(t) are the numbers of signal and back-
ground events surviving the selection (t). As the cross-
section of a new process is unknown, standard particle
physics FOMs are unsuitable. An alternative was proposed
in [1], often referred to as the Punzi FOM. Using this, one
can seek to maximise the inverse of the minimum detectable
cross-section σmin,
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,

(2)
We can build a differentiable function by replacing the fixed
cut on the output with a sum over all events, weighted with
the respective value of the output. If events classified as
signal cluster around an output of 1 and events classified as
background at 0, this quantity will closely approximate the
original function. In Eq. 2 this weighting can be captured
by performing the replacements

ϵ(t) → ϵ(w , b) =
∑
x

yi · ŷi (w , b) · ssig
Ngen

and (3)

B(t) → B(w , b) =
∑
x

(1 − yi ) · ŷi (w , b) · s i
bkg, (4)

where the sum is over all training inputs x and the index
i denotes the i th training event. The collection of weights
and biases that constitute the free parameters of the network
are denoted as w and b. Finally by summing the minimum
detectable cross-section for each of the mass hypotheses, we
yield the Punzi-loss;

CPunzi =
1

NZ ’

∑
mZ ’

σmin(w , b), (5)

variable description
p∗t,thrust(µ) The transverse momentum component

of the muons with respect to
the thrust axis in the CMS.

p∗t,µmin
(µmax) The transverse momentum component

of the higher energetic muon with respect
to the lower energetic muon in the CMS.

p∗l,µmin
(µmax) The longitudinal momentum component of

the higher energetic muon with respect
to the lower energetic muon in the CMS.

p∗t (µ
+µ−) The transverse momentum of the dimuon

system in the CMS.

Table: The most important features found after training BDTs with
many observables. These features are used for training the ANN.

Experiment

We trained a NN with 4 inputs, 2 hidden layers of 8 and 4
nodes respectively, and a single output node. The hidden
layers utilise hyperbolic tangent activation functions while
the output uses sigmoid. Training data comprised 1ab−1

of the main background process and 90 simulated Z’ signals
with masses in the range 0.1 - 9GeV, each comprising 20,000
events. The training of the Punzi-net was conducted in two
steps;

1 The NN was first trained with the binary cross entropy
(BCE) loss function, so as to introduce some initial
separation between the signal and background
distributions. It was found that without this the
Punzi-loss could not converge.

2 The NN was then trained using the Punzi-loss,
maximising the average Punzi FOM across the range of
mass hypotheses.

Every second Z’ signal is left out of training in order to be
used for validation and a check for generalisation.
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Figure: An outline of the network architecture.

Results
1 Improvement over BCE trained NN maximum

achievable FOM in lower mass hypotheses.

2 Comparable result to BCE trained NN maximum
achievable FOM in higher mass hypotheses.

3 Allows use of single cut to output of NN for all mass
hypotheses, matching or outperforming the maximum
FOM achievable by interpolated cuts to a BCE trained
network output. This simplifies analysis workflow and
studies of systematic uncertainties related to the use of
a NN.

4 Good interpolation to all hypotheses not used in
training.
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Figure: The Punzi FOM achieved by a single cut to the Punzi-net and
maximum Punzi FOM achievable with the optimal varying cut to both
the BCE trained network and Punzi-net for each mass hypothesis.

Figure: A 3D scatter plot showing the input space of the NN with
p∗t (µ

+µ−) fixed around 2.2GeV/c. The separation boundary defined
by the final selection (green sheet) separates the planes corresponding
to different recoil masses in a way that optimises the selection for all
signal hypotheses.

Conclusion and Outlook
1 We have demonstrated the Punzi-loss function, based

on the Punzi FOM, and investigated its application in
optimising the search for invisible decays of the
hypothetical Z’ boson.

2 The Punzi-loss function can bring improvements to the
achievable FOM when compared to a NN trained with
the more traditional BCE loss function.

3 In addition, the Punzi-net function allows for
simplification of subsequent analysis since a common
selection for all signal hypotheses can be applied to the
classifier output.

4 These results represent a step towards a fully
differentiable analysis framework in which optimisation
of signal selection can account for systematic effects.
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