

New software technologies in the LHCb Simulation

Gloria Corti¹ Adam Davis² Michal Kreps³ Michał Mazurek¹ Dmitry Popov^{1, 4} Benedetto Gianluca Siddi ⁵

¹CERN, European Organization for Nuclear Reasearch²University of Manchester ³University of Warwick ⁴University of Chinese Academy of Sciences ⁵Università degli studi di Ferrara

- **Gaussino** [1] is a new experiment-independent core simulation framework that:
- is based on Gaudi's inter-event-based parallelism of the event loop;
- marries it with Geant4 multi-threading;
- provides infrastructure for a 'plug-in' of HEP generators.
- Gauss-on-Gaussino is the newest version of the LHCb simulation framework, based on Gaussino.

Gauss				
Gaussino			LHCb	
Geant4	Pythia8	Gaudi		

5. External Geometry

LHCD

Gauss in Run 1 and Run 2

Gauss-on-Gaussino

2. Timing

- Around 80% [2] of the LHCb allocated CPU resources are used to produce Run 1 and Run 2 simulated samples.
- Particle showers in the electromagnetic calorimeter at LHCb dominate the time spent on simulation (RICH optical processes are turned off).

sub-detector with respect to the total time of the simulation

- ExternalDetector is a new package in Gaussino that allows for abstract, sensitive volumes of any shape to be inserted.
- **ParallelGeometry** is another special package that takes care of potential overlaps caused by extra volumes.
- These features allow to save custom information from detailed simulation needed to train and validate new models.

6. Examples of training samples

3. Fast simulations in Geant4

- The Geant4 [4] toolkit gives the possibility to replace its simulation of physics processes with a custom fast model.
- LHCb is introducing a palette of fast simulation models to complement the detailed simulation.

Model	Generation	Decay	Propagation	Migration to G-on-G
ReDecay [5]	\checkmark	\checkmark	\checkmark	done
ParticleGun [6]	\checkmark	\checkmark	\checkmark	done
SplitSim [6]	\checkmark	×	\checkmark	done
RICHless [6]	\times	×	\checkmark	in progress
TrackerOnly [6]	\times	×	\checkmark	in progress
Lamarr [7]	\times	×	\checkmark	to be done
Point lib [8]	\times	×	\checkmark	to be done
GAN [9]	\times	×	\checkmark	to be done

ECAL Fast Simulation with Geant4

4. Fast Simulation Interface

- FastSimulation interface provides a set of factories that configure the corresponding Geant4 objects at the right moment when running the application.

-20001000 20003000 -1000x mm

Energy deposition [3] in the LHCb ECAL from a training dataset produced by a minimum bias event with the beam conditions as foreseen in the Run 3 data-taking period

 Gaussino's implementation minimizes the work needed to implement fast simulation models and guarantees the integrity of the simulated data.

Time [3] spent by the infrastructure of the fast simulation interface with Geant4 10.7

A simplified model [3] of the FastSimulation interface in Gaussino

7. References					
[1]	B. G. Siddi and D. Müller. Gaussino - a gaudi-based core simulation framework. In <u>2019 IEEE Nuclear Science Symposium and</u> Medical Imaging Conference (NSS/MIC), pages 1–4, 2019.				
[2]	LHCb collaboration. Computing Model of the Upgrade LHCb experiment. http://cds.cern.ch/record/2319756, 2018. CERN-LHCC-2018-014, LHCb-TDR-018.				
[3]	Michał Mazurek, Gloria Corti, and Dominik Müller. New Simulation Software Technologies at the LHCb Experiment at CERN. https://cds.cern.ch/record/2790591, Nov 2021. LHCb-PROC-2021-011.				
[4]	S. Agostinelli et al. Geant4: A simulation toolkit. <u>Nucl. Instrum. Meth.</u> , A506:250, 2003.				
[5]	D. Müller, M. Clemencic, G. Corti, and M. Gersabeck. ReDecay: a novel approach to speed up the simulation at LHCb. <u>The</u> <u>European Physical Journal C</u> , 78(12), December 2018.				
[6]	Mark Peter Whitehead. A Palette of Fast Simulations in LHCb. https://cds.cern.ch/record/2630475, Jul 2018. LHCb-TALK-2018-302.				
[7]	Performance of the Lamarr Prototype: the ultra-fast simulation option integrated in the LHCb simulation framework. https://cds.cern.ch/record/2696310, Oct 2019. LHCb-FIGURE-2019-017.				
[8]	Matteo Rama. Fast calorimeter simulation in the LHCb Gauss framework. https://cds.cern.ch/record/2725640, Jul 2020. LHCb-TALK-2020-108.				
[9]	Fedor Ratnikov. Generative Adversarial Networks for LHCb Fast Simulation. https://cds.cern.ch/record/2699549, Nov 2019. LHCb-TALK-2019-403.				

ACAT 2021, Daejeon, South Korea

