

GRAN SASSO SCIENCE INSTITUTE

SCHOOL OF ADVANCED STUDIES Scuola Universitaria Superiore

Istituto Nazionale di Fisica Nucleare

European Research Council Established by the European Commission

Reconstruction and Particle Identification with CYGNO Experiment

Gran Sasso Science Institute, L'Aquila, Italy

F. Amaro, E. Baracchini, L. Benussi, C. M. B. Monteiro, S. Bianco, C. Capoccia, M. Caponero, G. Cavoto, R. J. C. Roque, I. A. Costa, E. Dané, E. Di Marco, G. D'Imperio, G. Dho, F. Di Giambattista, R. R. M. Gregorio, F. Iacoangeli, H. P. L. Jùnior, G. Maccarrone, R. D. P. Mano, M. Marafini, G. Mazzitelli, A.G. McLean, A. Messina, R. A. Nobrega, I. Pains, E. Paoletti, L. Passamonti, S. Pelosi, F. Petrucci, S. Piacentini, D. Piccolo, D.
Pierluigi, D. Pinci, F. Renga, A. Prajapati, F. Rosatelli, A. Russo, J. M. F. dos Santos, G. Saviano, A. S. L. Jùnior, N. Spooner, R. Tesauro, S. Tomassini, S. Torelli

Atul Prajapati

Date: 03/12/2021

Daejeon, South Korea

Outline

- 1) Dark Matter And Background
- 2) CYGNO/INITIUM detector
- 3) Monte-Carlo Simulations of track
- 4) Development of Discriminating variables
- Nuclear recoil and Electron recoil discrimination using Deep Learning Models

Dark Matter Introduction

Dark Matter and Background

1. Galaxy's rotation curve

2. Motion of galaxies

These observations shows that there is more mass than measured.

3. Gravitational Lensing

4. CMB measurement

WIMPs Detection Challenge

Direct Dark Matter detection measuring the recoiling nuclei in the elastic scattering of Dark Matter Particles

- Low event rate (0.1 event/kg/year)
 Background much higher than event rate
 Neutrinos from sun and atmosphere
 - Cosmic rays and cosmogenic activation of detector material
 - Natural radioactivity

CYGNO/INITIUM

- CYGNO uses He:CF, gas * mixture
- 3 GEM stack is used for * charge amplification
- * INITIUM is a part of CYGNO project which focuses on the development of TPCs with negative ion drift using SF_e gas

https://iopscience.iop.org/article/10.1088/1742-6596/1468/1/012039 https://iopscience.iop.org/article/10.1088/1748-0221/15/07/C07036

Amplification Region + Readout (sCMOS + PMT)

- Gaseous TPCs are * inherently a 3D detector
- Tracking *
- * Head tail asymmetry
- * dE/dX recognition *
 - Gas Flexibility

Soft electron from natural radioactivity

PHASE 0: R&D and prototypes 2015/16 2017/18 2019/21 ROMA1 LNF LNF/LNGS			PHASE 1: 1 m ³ Demonstrator 2022/25 LNF/LNGS
ORANGE	LEMON	LIME	CYGNO_01
- 1 cm drift	 3D printing 20 cm drift 	 50 cm drift underground tests shielding 	 background materials test, gas purification scalability

PHASE 2: 30 m³ Experiment 2026.. LNGS

CYGNO 30

Physics research

Monte-Carlo Simulations

Monte-Carlo Simulations

- Interaction of the particles with gas is simulated using either GEANT4 (for ER) or SRIM (for NR)
- These tracks are then projected to a 2D plane and detector effects are added like diffusion, camera noise, effective ionisation, gain fluctuation and geometrical acceptance etc.
- Digitized images are reconstructed with a density based algorithm to find the cluster around the track

Discriminating

Variable

Discriminating Variables

Observables for recoil identification in gas TPCs arXiv:2012.13649v1

Standard Deviation of Charge Distribution 2D(SDCD_2D):

 $SDCD = \sqrt{\frac{\sum_{i=1}^{N} (\mathbf{r_i} - \overline{\mathbf{r}})^2}{N}}.$

- Charge Uniformity 2D (ChargeUnif_2D)
- Maximum Density 2D (MaxDen_2D)
- Light Density (Delta)
- Skeleton Length
- Length Along Principal Axis (LAPA)

Discrimination is very difficult at enrgies below 20 keV using traditional approach.

Discrimination of ER and NR using Deep Learning Models

Deep Learning Models for Classification

- Three Models:
 - Pattern net with 3 hidden layers of size [10,10,10] neurons were used.
 - Random Forest Classifier
 - Gradient Boosted
 Classifier
- Data division [80:10:10]
- Inputs: LAPA_2D, skel_track, SDCD_2D, CylThick_2D, MaxDen_2D, eta, sc_size, sc_nhits, sc_integral, sc_length, sc_width,delta, slimness
- Output: Nuclear recoil and Electron Recoil class

RFC

GBC

Results of all the models

Fig. b

- Fig. a: ROC for all Models
- Fig. b: Background (ER) classified as Signal (NR) in each energy bin

Fig. c: Signal Efficiency for all models keeping 40 and 50% of efficiency in each

bin

Table 1: Minimum signal efficiency in each energy bin is the signal efficiency and Background efficiency is the overall background classified as signal in all energy bins. Here, traditional approach is discrimination by applying a simple cut on the variable.

Models	Signal Eff. [%]	Background Eff. [%]
RFC	50	0.075
	40	0.045
GBC	50	0.45
	40	0.27
DNN	50	0.99
	40	0.45
Traditional	50	3.5
Арргоаст	40	0.8

E Baracchini et. al., "Identification of low energy nuclear recoils in a gas TPC with optical readout", arXiv:2007.12508v1

Preliminary

13