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Introduction
• Detector simulation consumed 40% of grid CPU 

at start of LHC Run 2 [1]
• High Luminosity LHC will demand more events 

w/ more complex geometry & more precise 
physics [2]

• Use artificial intelligence (AI) to “denoise” 
reduced-precision output from faster simulation

 Get high-quality final result in less time
o Inspired by machine learning (ML) for Monte 

Carlo ray-tracing in computer animation [3]

Modified Simulation
• Change GEANT4 (full simulation) parameters to 

increase speed (tested in tt̄ events)
• Increase production cut (range-out distance 

below which particles do not produce secondary 
particles): reduce simulation time by almost 2×

• Magnetic field, Russian Roulette (randomly 
discarding low-energy particles while increasing 
energy of kept particles) parameters: ~5% effects 
on simulation time
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Samples
• Single photon showers, E = 850 GeV, η = 0.5, φ = 0
• Discretize GEANT4 energy deposits in ECAL barrel into 50×50 

pixel images in x, y (sum over z)
• Process same generated events w/ original (high-quality) and 

modified (production cut = 10 cm) simulations [4]
o Reset random seed per event (consistency)

• 5K events each for training, validation, testing

Results

• Good pixel energy agree-
ment down to low values

• Number of hits,
‹energy/pixel› shown
after threshold:
pixel energy > 0.1 MeV

• Good agreement in
shower centroid and width
(2nd moment)

• Per-event comparisons:
high concordance correlation
between CNN output & high-
quality simulation

 Successful proof of concept
for AI denoising approach
(regression-based ML,
built on classical simulation)
o Qualitatively competitive

results vs. other AI
approaches (e.g. [6]) with
much simpler CNN architecture

Training
• Architecture: convolutional neural network (CNN), 9 layers, 

100 features, 3×3 kernels, ReLU activation (PyTorch) [5]
o Regression: predict energy value for each pixel

• Improve low-energy fidelity:
use √E as input, LeakyReLU
activation in first CNN layer

• Normalize input as (√E – μ)/σ,
w/ mean and standard
deviation computed per-event
from modified simulation

• Hyperparameters: batch size 50, learning rate 0.001 (schedule: 
reduce on plateau), 150 epochs

• Loss function: L1 (mean absolute error)
• Example results:

Technical Performance
• Nvidia P100 GPU 
• Training: 2GB memory, 

~15 s/epoch
• Inference:

o Batch 1: 800 evt/s
o Batch 100: 8200 evt/s

Future Work
• Expand to more energy values, particle types, 

subdetectors, 3D images, etc.
• Extract additional input features from GEANT4
• Optimize NN architecture, loss function(s), 

hyperparameters
• Explore different simulation engines (e.g. CMS FastSim)
• Implement inference in CMS software
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