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Explainability of High Energy Physics events
classification using SHAP

Understanding the predictions of a machine learning model can be as important as achieving high perfor-
mance, especially in critical application domains such as health care, cybersecurity, or financial services,
among others. In scientific domains, the model interpretation can enhance the model’s performance, helping
to trust them accurately for its use on real data and for knowledge discovery. Explainable artificial intelligence
(XAI) is the current research field that proposes methods and techniques for producing more explainable mod-
els, and for understanding the predictions of machine learning models [1].

In the High Energy Physics (HEP) field, the complicated nature of the physics processes and data has re-
quired the use of complex machine learning models, like tree ensembles with thousands of trees, or deep
neural networks with thousands of layers and millions of parameters [2]. These complex machine learning
models are viewed as black-box systems that lack transparency and interpretability for getting a better model
performance.

This work is focused on the use of the SHapley Additive exPlanations (SHAP) [3] —a post-hoc explainability
technique of the XAI field— for interpreting machine learning classification models of High Energy Physics
(HEP) data. The SHAP method is based on the coalitional game theory [4], where groups of players make
decisions as coalitions building cooperative behavior. The goal is to distribute the total gain, or payoff, among
players, according to the relative importance of their contributions to the final outcome of a game. Shapley
values provide a solution to the assignment of a fair or reasonable reward to each player. In the machine
learning context the game is the output of the model, and the players are the features included in the model.

SHAP assigns importance values (so-called SHAP values) that summarize the importance of each feature on
the model prediction, contributing to the model transparency (as opposed to the black-box system). Briefly
speaking, the SHAP value of each feature is computed as the average marginal contribution of a feature value
across all possible coalitions [5].

In this work, we use the publicly available Higgs dataset [6]. This is simulated data, and the problem is to
identify the signal from the background, where the signal corresponds to a Higgs boson decaying to a pair of
bottom quarks according to the process: gg → H0 → W∓H± → W∓W±h0 → W∓W±bb̄.
Each event is represented by a set of 28 features, including 21 low-level features corresponding to physics
properties measured by the detector, and 7 high-level features derived from the previous ones.

The methodology of this work includes the building of machine learning classifiers for the identification of
signal and background (binary classification), using eXtreme Gradient Boosting (XGBoost) and deep neural
networks (DNN). We select the classifiers with the highest performance for analyzing the local (and global)
explainability using SHAP. The best XGBoost classifier achieved F1-score 0.74, precision 0.73, recall 0.76, ac-
curacy 0.73, and AUC-ROC 0.72. The best configuration was obtained on the training process, including hy-
perparameter optimization, using cross-validation, 10-fold, and the XGBoost Python module. The best DNN
classifier achieved F1-score 0.68, precision 0.67, recall 0.69, accuracy 0.66, and AUC-ROC 0.71. This network
was built using mainly two Python modules: Keras for neural network model development and Talos [7] for
automatic hyperparameter tuning, including the optimization of the DDN architecture parameters.

The interpretability stage using SHAP approach included the use of the Python SHAP module [8]. We
calculated the SHAP values in each model, using the TreeExplainer and DeepExplainer methods for XGBoost
and DNN, respectively. Considering SHAP is a post-hoc approach, both explainers have as input the previ-
ously build classification model and the testing dataset. The output of the method is the list of SHAP values,
which quantify the feature impact on the classifier prediction of each event of the dataset. The best form to



see the SHAP values and how each feature impact on the event classification is visualizing plots, like the force
plot, the dependence plot, and the summary plot, among others (current plots are available at [9]).

The force plot shows the contribution of each feature to the final score of the classifier. For instance, the
XGBoost prediction of the first event (labeled as background, predicted as background) of the testing dataset
is highly influenced by mwbb, jet1eta, mwwbb , and mbb features, where mwbb and jet1eta push the prediction
lower, whichmakes sense, considering the output score of a XGBoost classifier is in the range [0, 1], and scores
close to 0 is expected to be in the background class.

Tree-based models provide global measures of feature importance (based on the total gain). However, comput-
ing the SHAP values across the whole dataset improves the gain-based measure, by taking the SHAP values
over the whole dataset, and keeping the theoretical principles of SHAP values. The SHAP summary plot pro-
vides this information and shows a feature rank in descending order, and also a plot showing the magnitude
and prevalence of a feature’s impact. From our experiments, the top variables obtained for the XGBoost clas-
sifier were mbb, mwwbb, mwbb, mjjj , mjlv , jet1pt. For the DNN case, the top variables were mbb, mwwbb,
mwbb,mjjj ,mjlv , jet1pt. We can observe, that the high-level features belong to the top ranking, and hence,
they are contributing more to the model prediction.

To the best of our knowledge, the use of the SHAP method in the context of High Energy Physics is recent,
and only a few reports in the literature are applying this method in the HEP scenario. This is an ongoing
work, and the future tasks include the development of a framework able to explain different machine learning
models using SHAP, using datasets of other physics phenomena of interest. In addition, SHAP values can be
used as a feature selection technique.
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Significance
Nowadays, the understanding of a machine learningmodel can be as crucial as the prediction’s accuracy of the
model, especially in critical tasks such as disease diagnosis, automated vehicles, or financial services. In the
High Energy Physics field the understanding of complex models allows us to trust them accurately to identify
physics of interest, and draw conclusions against proposed theories. In addition, the interpretability of the
model prediction could enhance the classifications of events, especially in the context of imbalanced classifi-
cation, where the class of interest (the signal) is significantly underrepresented compared to the background.
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