

STUDY ON IMPACTS OF QUANTUM NOISES ON QGAN TRAINING S.Y. CHANG^{1,2}, F. REHM^{1,3}, S. KÜHN⁴, S. VALLECORSA¹, K. JANSEN⁵, L. FUNCKE⁶, T. HARTUNG^{4,7}, M. GROSSI¹, K. BORRAS^{3,5}, D. KRUECKER⁵ ¹CERN, Openlab, ²EPFL, ³ RWTH Aachen University ⁴ The Cyprus Institute, ⁵ Deutsches Elektronen-Synchrotron DESY, ⁶MIT, ⁷University of Bath

INTRODUCTION

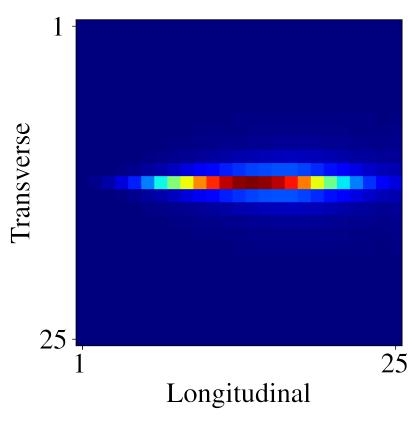
- Artificial noises are often injected in machine learning for a more robust, more stable and faster converging model.
- Current and near future quantum devices still have considerable levels of noise.
- Possibility to replace the artificial noise in classical ML with the intrinsic noise in quantum ML (QML).

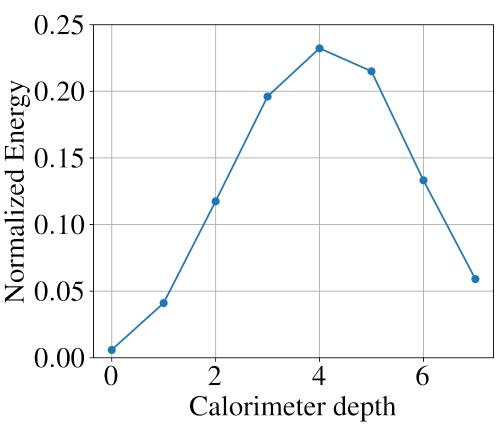
OBJECTIVES

- Investigate the impact of different errors in the training of quantum Generative Adversarial Networks (qGAN) [1] for a simplified High-Energy Physics (HEP) use case.
- Provide a broad exploratory study to unfold the hidden impact of noise in QML.

REDUCTION IN PROBLEM SIZE

- We reduce the original calorimeter output size generated by Monte Carlo based *Geant4* simulations
- Use the longitudinal profile to estimate incoming particle \rightarrow sum energy distribution along longitudinal direction
- Average over 10,000 samples & bin into 2^n pixels for *n* qubit quantum generator \rightarrow probability of getting state $|k\rangle$ = normalized energy at pixel k.
- Input dataset = scalars following the real energy distribution





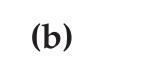
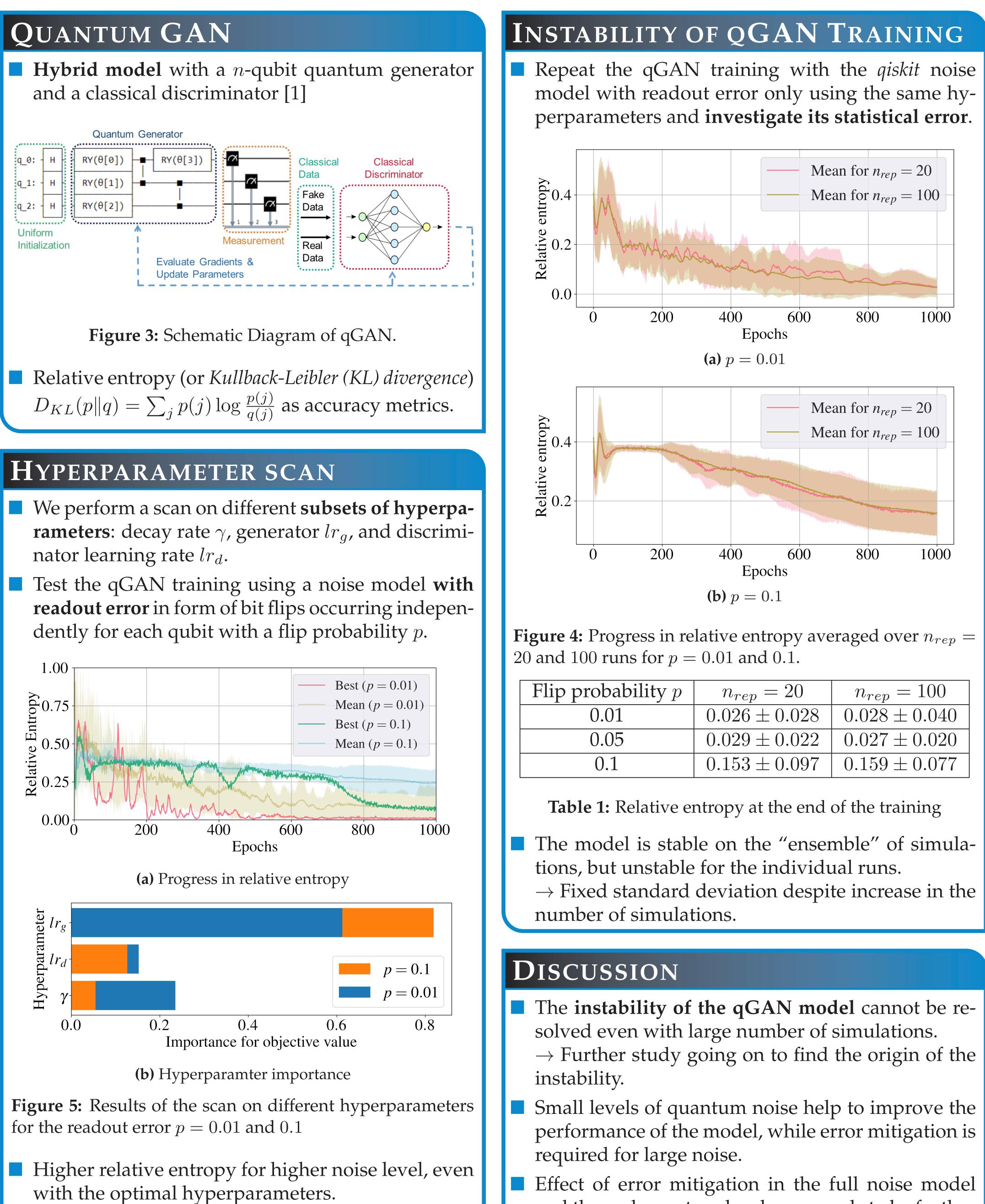


Figure 2: (a) Original calorimeter output generated by *Geant4*. (b) Reduced energy distribution used for our qGAN training.

REFERENCES

[1] Christa Zoufal, Aurélien Lucchi, and Stefan Woerner. Quantum generative adversarial networks for learning and loading random distributions. npj Quantum Infor*mation*, 5(1):103, Nov 2019.



Impact of generator learning rate becomes higher as the flip probability increases.

p probability p	$n_{rep} = 20$	$n_{rep} = 100$
0.01	0.026 ± 0.028	0.028 ± 0.040
0.05	0.029 ± 0.022	0.027 ± 0.020
0.1	0.153 ± 0.097	0.159 ± 0.077

and the real quantum hardware needs to be further studied.

ERROR MITIGATION

• We compare the training results with and without error mitigation method implemented by *qiskit*.

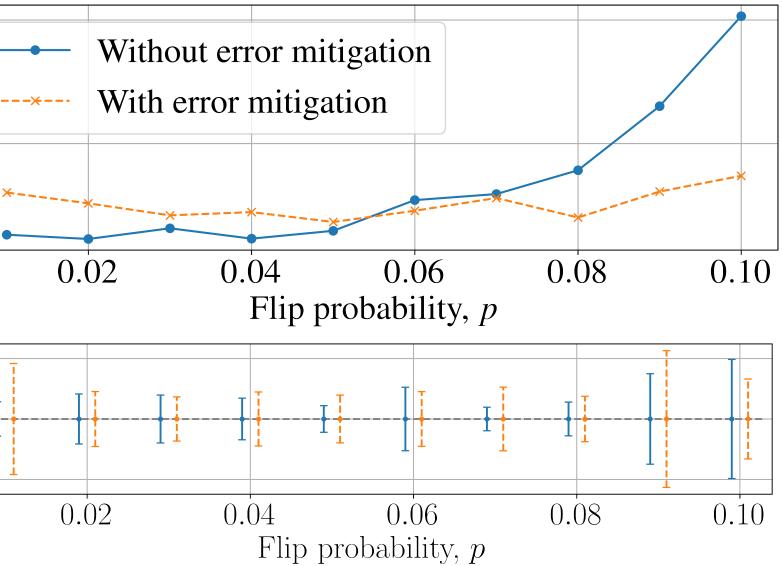


Figure 6: Mean (above) and standard deviation (below) of the final relative entropy, averaged over 20 simulations, with and without error mitigation w.r.t. the readout error.

Low readout error (p < 0.06) helps the qGAN training, while error mitigation plays an important role for high readout error.

Large standard deviation in the relative entropy which cannot be overcome with error mitigation.

INCLUDING CNOT ERROR

We run the training with a custom noise model consisting of 2.5% readout noise per qubit and 1.5%two qubit gate level noise (called CNOT error).

• We found new optimized hyperparameters to reduce the number of epochs to only 300 while reaching a good accuracy.

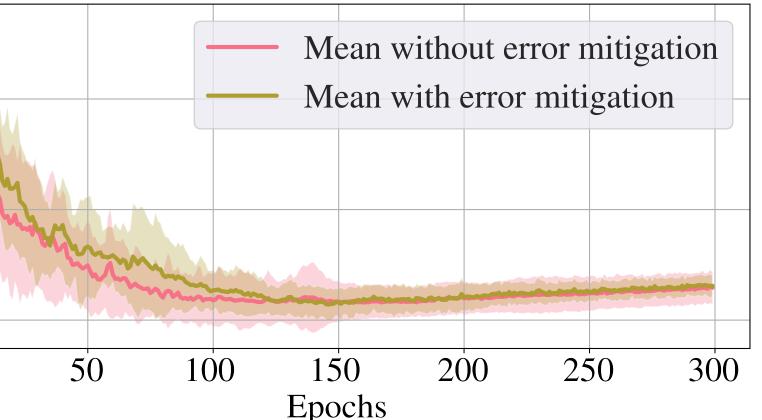


Figure 7: Progression in relative entropy using a custom noise model with and without error mitigation.

For the chosen noise levels one cannot see any improvement when including error mitigation.

ONGOING RESEARCH

Train the qGAN on real quantum hardware.

Apply other error mitigation methods and compare the resulting outcomes.