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Motivations
Kernel methods represent an elegant and mathematically sound approach to nonparametric learning, but so far could hardly be used in large scale
problems, since naïve implementations scale poorly with data size. Recent improvements have shown the benefits of a number of algorithmic ideas,
combining optimization, numerical linear algebra and random projections. These, combined with (multi-)GPU specific implementations, allow for great
speedups on large scale datasets while delivering highly competitive performances. We demonstrate here their effectiveness on HEP specific problems
such as signal-versus-background classification and model-independent new physics searches. We also compare kernel methods with with similar
neural network based models, showing significant gains in terms of training times and computational costs while maintaining comparable
performances.

Fast and flexible nonlinear models
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Signal vs background classification
(model-dependent)[1,2]

Classification

Data: SUSY (9/19d)

Training + valid : 2.6M + 100k

Test: 500k

Accuracy and running-time comparisons on large scale HEP datasets[1].

Model-independent searches
Learning the (extended) likelihood ratio test statistics[3,4]
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Model and results
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Experiments on simulated data:

• DIMUON[4]: 𝑝𝑝 → 𝜇*𝜇+
𝑥!, = 𝑝-#, 𝑝-), 𝜂#, 𝜂), ΔΦ ,𝑚ℓℓ

• SUSY and HIGGS[2]:
low-level (9/21d), low+high-level (19/28d)

Estimate 𝑝(𝑡|0)
with SM toys

p-value

Average training times per single run with standard deviations.

Data:
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• Standard model MC

• Measurements

Re-weighted logistic loss
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