CMS Tracker Alignment: Legacy results from LHC Run-II and Run-III prospects.

Lakshmi Pramod on behalf of the CMS Collaboration

The CMS tracker

Tracker Alignment:
Purpose ${ }_{[2]}$

Module misaligne
other modules

Track-based alignment ${ }_{[3]}$
Goal: To push precision well below the intrinsic hit resolution
Follows a least-square approach, minimising x^{2}.
$\chi^{2}(\mathbf{p}, \mathbf{q})=\sum_{j} \sum_{i}\left(\frac{m_{i j}-f_{i j}\left(\mathbf{p}, \mathbf{q}_{j}\right)}{\sigma_{i j}}\right)^{2}$
where \mathbf{p} : global alignment parameters $\mathrm{p}:$ global alignment parar
\mathbf{q}_{9} : local track parameters
$\boldsymbol{m}:$: measured hit position $m_{i:}$: measured hit position
$\sigma_{i j}$: hit measurement uncertainty
Two independent (but complementary) approaches used
MillePede-II
Global X^{2} minimisation
Global fit of p and

- Lippy

Local x^{2} minimisation
Iterative procedure wherein position and orientation of each
sensor determined independently

Tracker alignment at CMS for Run-II

Alignment during data taking

- Continuous monitoring of high Continuous monitoring
of pixel detector (online) corrections exceed certain cocted if alignment Track-based alignment periodically run offline Improved alignment precision obtained by refining
automated alignment with regular updates from offline automated alignment with regular updates from offline computations
Alignment for end-of-year re-reconstruction Alignment conditionserala
statistics during one data-taking year
Alignment for legacy reprocessing
Ultimate accuracy of the alignment calibration used for the final or legacy reprocessing of the data Up to $\approx 700 \mathrm{k}$ parameters, i.e., 220 geometries over the
three campaigns to cover significant changes of the three campaigns to cover significant changes of the
aligment conditions over

Run-II Legacy Results ${ }_{[4]}$

Tracking Performance
Analysed using Distributions of median track-hit residuals (DMRs)

- Each track refitted without the hit under consideration, for unbiased computation The median of the residuals per module calculated
Mean (μ) and width (σ) of the DMR extracted with a Gaussian
For perfect alignment, DMRs expected to be centred at zero
Below: DMR in the local $x(x \times$) coordinate for BPIX averaged over all IOVs

The direction of the Lorentz drift depends on the orientation of the modules. So DMRs also produced for inward- and outward-pointing mod
Difference between the means of the DMRs, $\Delta \mu$, calculated - Non-zero value indicates residual biases due to the accumulated effects from

Trends (Vertical dotted lines indicate a change in pixel tracker calibration)
Significant improvement for the legacy reprocessing over the alignment during - The finer granularity of time dependence in legacy reprocessing reduces the bias The rapidy changing shift from local reconstruction can be absorbed in the

Vertexing Performance

Cosmic ray muon track validation

Dimuon invariant mass reconstruction

Alignment Position Errors Accounts for the uncertainty in the positions of the modules derived from the alignment

Basic idea of APE estimation:

- Hit residual $r=x_{\text {wh }}-x_{m \text { and }}$ and square of residual error $\sigma_{r}{ }^{2}=\sigma_{w_{k}}{ }^{2}+\sigma_{\mathrm{m}}{ }^{2}$ Normalized hit residual distributions $r_{\text {nom }}=r / \sigma_{\text {, }}$ of each module should equal 1 for perfect alignmen Introduce $\sigma_{\text {ale }}$ so that σ_{t}^{2} If $\sigma_{\text {alpe }}$ correctly estimated, $r_{\text {mom }}^{\prime}=I / \sigma_{\mathrm{t}}^{\prime}=1$

Run-III: Commisioning and Prospects

CRAFT21: Cosmic Run At Four Tesla + Collisions at $900 \mathrm{GeV}{ }_{[6]}$

Further Steps

NOI

References
[1]The Phase-2 Upgrade of the CMS Tracker, CMS Collaboration, CERN-LHCC-2017-009, CMS-TDR-014
[2]Momentum bias determination in the tracker alignment and first differential ttbar cross section measurement at CMS, Holger Enderle, CERN-THESIS-2012-248 3JAlignment of the CMS tracker with LHC and cosmic ray data, CMS Collaboration, 2014 JINST 9 P06009
$[4 /$ Strategies and performance of the CMS silicon tracker alignment during LHC Run 2, CMS Collaboration, CMS-TRK-20-001-003
 [6]CMS Status Report, 148th LHCC Meeting - OPEN Session

