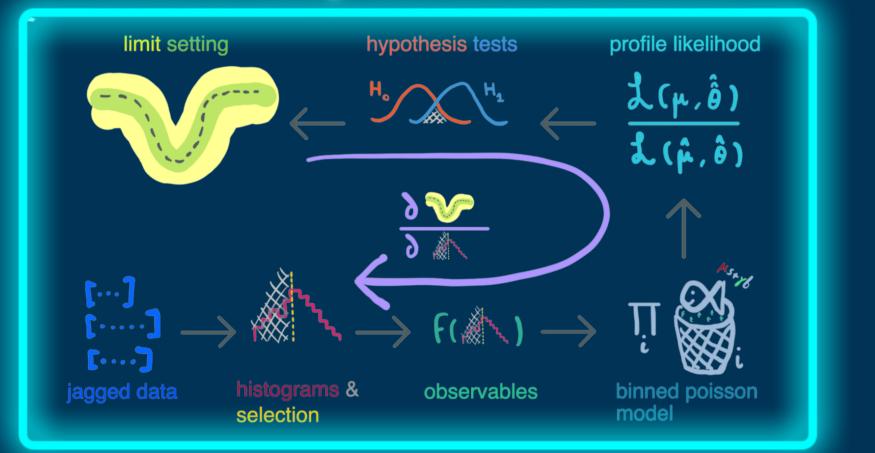


By making an analysis workflow that's fully differentiable...



How? Automatic differentiation:

We train the neural network via gradient descent, i.e.: weights_{n+1} \approx weights_n – ∇ loss(weights_n) * lr. Crucially, this requires the calculation of ∇ loss(weights_n): the loss (CL_s) must be *differentiable with respect to the weights*.

We achieved this by coding an analysis using automatic differentiation software (JAX), using a trick to differentiate through a fit, and by approximating a histogram differentiably.

Why? sig/bkg seperation may not be enough:

An illustrative one bin example with a single parameter ϕ : Optimising for s/b separation gives us the best stat-only CLs, but the worst CLs when including background uncertainty!

WANT TO KNOW MORE? VISIT GITHUB.COM/GRADHEP/NEOS

LUKAS HEINRICH

WOW! Machine learning!

...we train a NN observable to minimise the expected CL_s!

