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Jet tagging is a critical task in online and offline computing at the LHC
• Online trigger systems have strict latency requirements for full event

processing: 4 𝜇s for Level 1 and 200 ms for the High Level Trigger
• Reducing model size can decrease inference time, enabling ML-based

tagging models to be used in experiment triggers
• Enforcing expected equivariance is a proposed technique to decrease

model size while maintaining performance
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• Quarks and gluons produced in pp collisions at the LHC produce
collimated sprays of particles called jets

• After jets are reconstructed from detector data, we need to identify
what particle they originated from
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• We focus on the problem of distinguishing 
top jets from light quark/gluon jets

• Use open-source 14TeV ATLAS dataset1

• 1.2m training jets, 400k testing & 
validation jets

• Selected by 𝑝T∈(550,650)GeV, 
clusterΔ𝑅<0.8, pseudorapidity |𝜂| < 2 

• Max 200 constituents 

In order to study the impact of different GNN components and behaviors on jet
tagging we developed GeneralNet, which contains a convolution SemiEquivariantNet.
This Interaction Network-like convolution allows scalar and vector objects to pass
through while maintaining their group transformation properties. Hidden channels do
not transform as a group representation.

Several ML-based jet tagging architectures are already well studied3

We systematically vary the different hyperparameters (HP) using Weights & 
Biases HP tuning API, over 1000 HP combinations

• Using Bayesian optimization with AUC score as figure of merit
• Trained on NERSC HPC systems (GPUS) for approx. 36 compute-days

EQUIVARIANT GNNS

• To enforce equivariance in a GNN the passed messages must be 
constructed of equivariant information

• Following EGNN2 formulation, message equivariance is enforced by 
taking linear combinations of vectors and transforming them under the 
expected group symmetry

• Enforce Lorentz equivariance using Minkowski norm

To understand which hyperparameters that the AUC and ant factor are
most sensitive to we use built in W&B importance and correlation tools
• Correlation: linear correlation of AUC/ant factor vs hyperparameter
• Importance: library trains a random forest (RF) with the set of run HPs,

with prediction goal of AUC or ant factor. RF naturally produces
“variable importance” values

4

To study tradeoff between model accuracy and size, define the ant factor: 

For background rejection rate               at a particular signal efficiency 

Model Accuracy AUC 𝜖𝐵
−1 𝑁𝑝𝑎𝑟𝑎𝑚𝑠 𝒂𝒏𝒕

ResNeXt 0.936 0.984 1122 ± 47 1.46M 0.0007

ParticleNet
[2]

0.938 0.985 1298 ± 46 498k 0.0026

EFP 0.932 0.980 384 1k 0.384

LGN 0.929 0.964 435 ± 95 4.5k 0.097

Model Hyperparameters Training Hyperparameters

Graph Hyperparameters

Hyperparameter Values

𝑁 edge layers    𝜙𝑠,𝜙h ∈[1,3]

𝑁 node layers    𝜃𝑠, 𝜃h ∈[0,3]

𝑁 graph iterations ∈[1,6]

𝑁 scalar dimensions ∈[1,256]

𝑁 hidden dimensions ∈[1,256]

𝑁 attention heads 𝜓 ∈[1, 256]

Shortcut None, Skip, Concat

Activations ReLU, SiLU, Tanh

Batch norm, Layer norm True, False

Hyperparameter Values

Graph construction
Static KNN, Dynamic KNN, 
Fully Connected

𝐾 neighbours ∈[3, 32]

Hyperparameter Values

Dropout ∈[0.01, 0.4]

Learning rate ∈[10−5, 10−2]

Max epochs ∈[10, 50]

The GeneralNet with SemiEquivariant convolution attains SotA performance
(AUC=0.9840), with AUC strongly correlated to network depth and number of
hidden features. Importantly, by RF HP analysis, we see very little importance in
number of message-passing iterations or KNN neighborhood size. However, very
good performance (AUC=0.9834) is obtained with 20x smaller networks, by
exploiting a narrow vector channel and a narrow hidden channel, and a fully
connected graph. In general, best ant factors are obtained by combining narrow
(<40) vector channels and narrow (<40) hidden channels. This suggests the
network can quickly learn Lorentz-invariant physics with vector channels, while
gaining last-mile expressiveness from hidden channels. It remains to study the
physical phenomena learned by this combination of semi-equivariance, and
follow-up studies are currently using interpretability tools for this.
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