



### MOTIVATION

Jet tagging is a critical task in online and offline computing at the LHC

- Online trigger systems have strict latency requirements for full event processing: 4  $\mu$ s for Level 1 and 200 ms for the High Level Trigger • Reducing model size can decrease inference time, enabling ML-based
- tagging models to be used in experiment triggers Enforcing expected equivariance is a proposed technique to decrease model size while maintaining performance

### JET TAGGING

- Quarks and gluons produced in pp collisions at the LHC produce collimated sprays of particles called jets
- After jets are reconstructed from detector data, we need to identify what particle they originated from Ground truth "constituent" Another constituent
- We focus on the problem of distinguishing top jets from light quark/gluon jets
- Use open-source 14TeV ATLAS dataset<sup>1</sup> • 1.2m training jets, 400k testing &
  - validation jets • Selected by  $p_{T} \in (550, 650)$  GeV,
  - cluster $\Delta R$ <0.8, pseudorapidity  $|\eta|$  < 2
  - Max 200 constituents

## EQUIVARIANT GNNS

- To enforce equivariance in a GNN the passed messages must be constructed of equivariant information
- Following EGNN<sup>2</sup> formulation, message equivariance is enforced by taking linear combinations of vectors and transforming them under the expected group symmetry

PAST LIGHT CONE

Enforce Lorentz equivariance using Minkowski norm

|             | $\vec{m}_{ij} = \phi_e \left( \vec{h}_i^l, \vec{h}_j^l, \eta_{\mu\nu} \Delta x_{ij}^{l,\mu} \Delta x_{ij}^{l,\nu}, a_{ij} \right)$               |  |
|-------------|--------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Equivariant | $p_i^{l+1,\mu} = p_i^{l,\mu} + C \sum_{j \neq i} \left( a p_i^{l,\mu} + b p_j^{l,\mu} \right) \phi_x(\vec{m}_{ij}) \rightarrow \text{Invariant}$ |  |
|             | $\vec{m}_i = \sum_{j \in N(i)} \vec{m}_{ij}$                                                                                                     |  |
|             | $\vec{h}_i^{l+1} = \phi_h(\vec{h}_i^l, \vec{m}_i)$                                                                                               |  |

### LANDSCAPE OF TAGGERS

| Several ML-based jet tagging architectures are already well studied <sup>3</sup>                                                                       |          |       |                   |                     |        |  |  |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------|----------|-------|-------------------|---------------------|--------|--|--|--|
| Model                                                                                                                                                  | Accuracy | AUC   | $\epsilon_B^{-1}$ | N <sub>params</sub> | ant    |  |  |  |
| ResNeXt                                                                                                                                                | 0.936    | 0.984 | 1122 ± 47         | 1.46M               | 0.0007 |  |  |  |
| ParticleNet                                                                                                                                            | 0.938    | 0.985 | <b>1298</b> ± 46  | 498k                | 0.0026 |  |  |  |
| EFP                                                                                                                                                    | 0.932    | 0.980 | 384               | 1k                  | 0.384  |  |  |  |
| LGN                                                                                                                                                    | 0.929    | 0.964 | 435 <u>+</u> 95   | 4.5k                | 0.097  |  |  |  |
| To study tradeoff between model accuracy and size, define the <b>ant factor</b> :<br>$ant = \frac{accuracy}{model \ size} = \frac{\epsilon_B^{-1}}{N}$ |          |       |                   |                     |        |  |  |  |
| For background rejection rate $\frac{1}{\epsilon_B} = \frac{1}{fpr}$ at a particular signal efficiency                                                 |          |       |                   |                     |        |  |  |  |

# A Comprehensive Comparison of GNN **Architectures for Jet Tagging**

Daniel Murnane<sup>1</sup>, Savannah Thais<sup>2</sup>, Jason Wong<sup>3</sup> <sup>1</sup>Lawrence Berkeley National Lab, <sup>2</sup>Princeton University, <sup>3</sup>UC Berkeley



### EXPERIMENTS

We systematically vary the different hyperparameters (HP) using Weights & Biases HP tuning API, over 1000 HP combinations

• Using Bayesian optimization with AUC score as figure of merit Trained on NERSC HPC systems (GPUS) for approx. 36 compute-days

### Model Hyperparameters

### Training Hyperparameters

| Hyperparameter                     | Values             | Hyperparameter     | Values          |  |  |
|------------------------------------|--------------------|--------------------|-----------------|--|--|
| N edge layers φs,φh                | ∈[1,3]             |                    | Static KN       |  |  |
| N node layers $\theta s, \theta h$ | ∈[0,3]             | Graph construction | Fully Cor       |  |  |
| N graph iterations                 | ∈[1,6]             | K neighbours       | €[3, 32]        |  |  |
| N scalar dimensions                | ∈[1,256]           |                    |                 |  |  |
| N hidden dimensions                | ∈[1,256]           | Graph H            | Graph Hyperpara |  |  |
| $N$ attention heads $~\psi$        | ∈[1, 256]          | Hyperparameter     | Values          |  |  |
| Shortcut                           | None, Skip, Concat | Dropout            | €[0.01, 0       |  |  |
| Activations                        | ReLU, SiLU, Tanh   | Learning rate      | ∈[10-5,1        |  |  |
| Batch norm Laver norm              | True False         | Max epochs         | €[10, 50]       |  |  |

To understand which hyperparameters that the AUC and ant factor are most sensitive to we use built in W&B importance and correlation tools • Correlation: linear correlation of AUC/ant factor vs hyperparameter

• Importance: library trains a random forest (RF) with the set of run HPs, with prediction goal of AUC or ant factor. RF naturally produces "variable importance" values



N, Dynamic KNN, nected

#### ameters

10-2]



### CONCLUSIONS

The GeneralNet with SemiEquivariant convolution attains SotA performance (AUC=0.9840), with AUC strongly correlated to network depth and number of hidden features. Importantly, by RF HP analysis, we see very little importance in number of message-passing iterations or KNN neighborhood size. However, very good performance (AUC=0.9834) is obtained with 20x smaller networks, by exploiting a narrow vector channel and a narrow hidden channel, and a fully connected graph. In general, best ant factors are obtained by combining narrow (<40) vector channels and narrow (<40) hidden channels. This suggests the network can quickly learn Lorentz-invariant physics with vector channels, while gaining last-mile expressiveness from hidden channels. It remains to study the physical phenomena learned by this combination of semi-equivariance, and follow-up studies are currently using interpretability tools for this.

### REFERENCES

- https://zenodo.org/record/2603256#.YXoI3Z5KjEZ
- VG Satorras, E Hoogeboom, and M Welling, "E(N) Equivariant Graph Neural Networks" (2021)
- A Bogatskiy et al, "Lorentz Equivariant Neural Networks for Particle Physics" (2020)
- 4. H Qu and L Gouskos, "ParticleNet: Jet Tagging via Particle Clouds" (2020)

**Contact:** Daniel Murnane, dtmurnane@lbl.gov This work is supported by IRIS-HEP through the U.S. National Science Foundation (NSF) under Cooperative Agreement OAC-1836650 and by Department of Energy grant DE-SC0007968.

